版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、3.1.4 3.1.4 空间向量的正交空间向量的正交分解及其坐标表示分解及其坐标表示1211122122e eae eaee 如如果果 ,是是同同一一平平面面内内的的两两个个向向量量,那那么么对对于于这这一一平平面面内内的的任任一一向向量量 ,有有且且只只有有一一对对实实数数 ,使使。( 、叫叫做做表表示示这这一一平平面面内内所所有有向向量量的的一一组组不不共共线线基基底底。)平面向量基本定理:平面向量的正交分解及坐标表示平面向量的正交分解及坐标表示xyoaijaxiy j(1,0),(0,1),0(0,0).ij【温故知新】问题:问题:p 我们知道,平面内的任意一个向量我们知道,平面内的任意
2、一个向量 都可以都可以用两个不共线的向量用两个不共线的向量 来表示(平面向量基本定来表示(平面向量基本定理)。对于空间任意一个向量,有没有类似的结论呢?理)。对于空间任意一个向量,有没有类似的结论呢?, a b xyzOijkQPp .OPOQzk .OQxiy j.OPOQzkxiy jzk 由此可知,如果由此可知,如果 是空间两是空间两两垂直的向量,那么,对空间任一两垂直的向量,那么,对空间任一向量向量 ,存在一个有序实数组,存在一个有序实数组 x,y,z使得使得 我们称我们称 为向量为向量 在在 上的分向量。上的分向量。, ,i j k p .pxiy jzk ,xi y j zk, ,
3、i j k p 探究:探究:在空间中,如果用任意三个不共面向量在空间中,如果用任意三个不共面向量 代替两两垂直的向量代替两两垂直的向量 ,你能得出类似的,你能得出类似的 结论吗?结论吗?, ,a b c , ,i j k 任意任意不共面不共面的三个向量都可做为空间的一个的三个向量都可做为空间的一个基底基底。一、空间向量基本定理:一、空间向量基本定理: 如果三个向量 不共面,那么对空间任一向量 ,存在一个唯一的有序实数组x,y,z,使, ,a b c p . pxaybzc都叫做都叫做基向量基向量, ,a b c (1)任意)任意不共面不共面的三个向量都可做为空间的一个基底。的三个向量都可做为空
4、间的一个基底。特别提示:特别提示:对于基底对于基底a,b,c,除了应知道除了应知道a,b,c不共面,不共面, 还应明确:还应明确: (2) 由于可视由于可视 为与任意一个非零向量共线,与任为与任意一个非零向量共线,与任意两个非零向量共面,所以三个向量不共面,就隐含着意两个非零向量共面,所以三个向量不共面,就隐含着它们都不是它们都不是 。00(3)一个基底是指一个向量组,一个基向量是指基)一个基底是指一个向量组,一个基向量是指基底中的某一个向量,二者是相关联的不同概念。底中的某一个向量,二者是相关联的不同概念。二、空间直角坐标系二、空间直角坐标系 单位正交基底:单位正交基底:如果空间的一个基底的
5、如果空间的一个基底的三个基向量互相垂直,且长都为三个基向量互相垂直,且长都为1,则这个,则这个基底叫做基底叫做单位正交基底单位正交基底,常用常用 e1 , e2 , e3 表示表示 空间直角坐标系:空间直角坐标系:在空间选定一点在空间选定一点O和一和一个单位正交基底个单位正交基底 e1,e2,e3 ,以点以点O为原点,分别为原点,分别以以e1,e2,e3的正方向建立三条数轴:的正方向建立三条数轴:x轴、轴、y轴、轴、z轴,它们都叫做坐标轴轴,它们都叫做坐标轴.这样就建立了一个这样就建立了一个空间直角坐标系空间直角坐标系O-xyz 点点O叫做原点,向量叫做原点,向量e1,e2,e3都叫做都叫做坐
6、标向量坐标向量.通过每两个坐通过每两个坐标轴的平面叫做标轴的平面叫做坐标平面坐标平面。xyzOe1e2e3 给定一个空间坐标系和向给定一个空间坐标系和向量量 ,且设且设e1,e2,e3为坐标向量,为坐标向量,由空间向量基本定理,存在唯由空间向量基本定理,存在唯一的有序实数组一的有序实数组(x,y, z)使使 p = xe1+ye2+ze3 有序数组有序数组( x, y, z)叫做叫做p在空间在空间直角坐标系直角坐标系O-xyz中的坐标,中的坐标,记作记作.P=(x,y,z)三、空间向量的直角坐标系三、空间向量的直角坐标系pxyzOe1e2e3p例例1 1平行六面体中平行六面体中, ,点点MC=
7、2=2AM, ,A1 1N=2=2ND, ,设设AB= =a, ,AD= =b, ,AA1 1= =c, ,试用试用a, ,b, ,c表示表示MN. .分析分析: :要用要用a, ,b, ,c表示表示MN, ,只要结合图形只要结合图形, ,充充分运用空间向量加法分运用空间向量加法和数乘的运算律即可和数乘的运算律即可. .ABCDA1B1D1C1MN解解: :ABCDA1B1D1C1MN连连AN, , 则则MN=MA+ANMN=MA+ANMA=MA= AC =AC = ( (a+ +b) )1313AN=AD+DN=ADAN=AD+DN=ADNDND= = (2 2 b + + c ) )13=
8、 = ( a + + b + + c ) )13MN= MA+ANMN= MA+AN例例1 1平行六面体中平行六面体中, ,点点MC=2=2AM, ,A1 1N=2=2ND, ,设设AB= =a, ,AD= =b, ,AA1 1= =c, ,试用试用a, ,b, ,c表示表示MN. .例题例题已知空间四边形OABC,其对角线为OB,AC,M,N,分别是对边OA,BC的中点,点P,Q是线段MN三等分点,用基向量OA,OB,OC表示向量OP,OQ.BOACPNMQ练习练习 . .空间四边形空间四边形OABCOABC中中,OA=,OA=a,OB=,OB=b,OC=,OC=c点点M M在在OAOA上上
9、, ,且且OM=2MA,NOM=2MA,N为为BCBC的中点的中点, ,则则MN=( ).MN=( ).OABCMN(A) a b + c 122312(B) a + b + c 122312(C) a + b c 122312(D) a + b c 1223233.1.5 空间向量运算的坐标表示一、向量的直角坐标运算一、向量的直角坐标运算则设),(),(321321bbbbaaaa;ab;ab;a;a b/;.ab;ab112233(,)ab ab ab112233(,)ab ab ab123(,),()aaaR1 12233a ba ba b112233,()ab ab abR112233
10、/ababab1 122330a ba ba b二、距离与夹角二、距离与夹角1. 1.距离公式距离公式(1 1)向量的长度(模)公式)向量的长度(模)公式222123| aa aaaa| ABABAB AB212121(,)xxyyzz222212121()()()xxyyzz222,212121()()()A Bdxxyyzz在空间直角坐标系中,已知、在空间直角坐标系中,已知、,则,则111(,)A xyz222(,)B xyz(2)空间两点间的距离公式)空间两点间的距离公式cos,| | a ba bab1 1223 3222222123123;a ba ba baaabbb2.2.两个向
11、量夹角公式两个向量夹角公式注意:注意:(1)当)当 时,同向;时,同向;(2)当)当 时,反向;时,反向;(3)当)当 时,。时,。cos,1 a b与 abcos,1 a b与 abcos,0 a bab思考:当思考:当 及及 时,时,夹角在什么范围内?夹角在什么范围内?1cos,0 a b,10cos a b练习:练习:1.求下列两个向量的夹角的余弦:求下列两个向量的夹角的余弦:(1)(2,3,3),(1,0,0) ;ab(2)( 1,1,1),( 1,0,1) ; ab2.求下列两点间的距离:求下列两点间的距离:(1)(1,1,0) ,(1,1,1) ;AB(2)( 3,1,5) ,(0
12、,2,3) .CD例例5如图,在正方体中,如图,在正方体中,求与所成的角的余弦值。,求与所成的角的余弦值。1111ABCDA BC D11B E11114A BD F1BE1DFF1E1C1B1A1D1DABCyzxO解:设正方体的棱长为解:设正方体的棱长为1,如图建,如图建立空间直角坐标系,则立空间直角坐标系,则Oxyz13(1,1,0) ,1,1 ,4BE11(0,0,0) ,0, 1 .4,DF1311,1(1,1,0)0,1 ,44BE 例例5如图,在正方体中,如图,在正方体中,求与所成的角的余弦值。,求与所成的角的余弦值。1111ABCDA BC D11B E11114A BD F1
13、BE1DFF1E1C1B1A1D1DABCxyzO1110, 1(0,0,0)0, 1 .44 ,DF111115001 1,4416 BE DF111717|, |.44 BEDF111111151516cos,.17| |171744 BE DFBEDFBEDF例 6如图,正方体1111ABCDA B C D 中,E,F分别是1BB,11D B中点,求证:1EFDA 练习:练习:。求证:的值;求的长;求的中点,、分别为、,棱,中,底面:直三棱柱如图MCBA3)CB,cos2)BN1)AABANM2AA90BCA1CBCAABC, 11111111o111BACBAABCBCC1A1B1ANM思考题:。的面积方法求用向量(、(已知SABC),5 , 1, 1 (),6 , 1 , 2B) 3 , 2 , 0AC四、课堂小结
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 细毛材料生物降解-洞察分析
- 心理干预技术评估-洞察分析
- 《人力与组织发展》课件
- 亚硝酸钠毒性研究进展-洞察分析
- 微创技术在牙科手术中的应用-洞察分析
- 约数应用案例分析-洞察分析
- 网络钓鱼攻击手段-洞察分析
- 条口识别产业应用-洞察分析
- 药物现代工艺优化探讨-洞察分析
- 营养健康食品评价-洞察分析
- 砸墙安全的协议书(通用)
- 康复科建设可行性方案
- 白雪公主 台词
- 课题五-车刀简介(车刀种类及用途)
- 自身免疫性疾病实验研究
- 检验与临床沟通与案例分析
- 《发电厂风烟系统》课件
- 高二历史期末复习核心知识串讲(选择性必修1第1-10课) 【知识精讲精研】高二历史上学期期末考点大串讲(统编版)
- 地铁运营公司工务线路质量评定标准
- 历史七年级上学期期末试卷含答案
- 【基于抖音短视频的营销策略分析文献综述2800字(论文)】
评论
0/150
提交评论