版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第二章 第11炼 函数零点的性质 函数及其性质第11炼 函数零点的性质一、基础知识:1、函数零点,方程,图像交点的相互转化:有关零点个数及性质的问题会用到这三者的转化,且这三者各具特点:(1)函数的零点:有“零点存在性定理”作为理论基础,可通过区间端点值的符号和函数的单调性确定是否存在零点(2)方程:方程的特点在于能够进行灵活的变形,从而可将等号两边的表达式分别构造为两个可分析的函数,为作图做好铺垫(3)图像的交点:通过作图可直观的观察到交点的个数,并能初步判断交点所在区间。三者转化:函数的零点方程的根方程的根函数与的交点2、此类问题的处理步骤:(1)作图:可将零点问题转化成方程,进而通过构造
2、函数将方程转化为两个图像交点问题,并作出函数图像(2)确定变量范围:通过图像与交点位置确定参数和零点的取值范围(3)观察交点的特点(比如对称性等)并选择合适的方法处理表达式的值,3、常见处理方法:(1)代换法:将相等的函数值设为,从而用可表示出,将关于的表达式转化为关于的一元表达式,进而可求出范围或最值(2)利用对称性解决对称点求和:如果关于轴对称,则;同理,若关于中心对称,则也有。将对称的点归为一组,在求和时可与对称轴(或对称中心)找到联系二、典型例题:例1:已知函数,若,且,则的取值范围是( )A. B. C. D. 思路:先做出的图像,通过图像可知,如果,则,设,即,由范围可得:,从而,
3、所以,而,所以答案:C小炼有话说:(1)此类问题如果图像易于作出,可先作图以便于观察函数特点(2)本题有两个关键点,一个是引入辅助变量,从而用表示出,达到消元效果,但是要注意是有范围的(通过数形结合需与有两交点);一个是通过图像判断出的范围,从而去掉绝对值。例2:已知函数 ,若有三个不同的实数,使得 ,则的取值范围是_思路:的图像可作,所以考虑作出的图像,不妨设,由图像可得: ,且关于轴对称,所以有,再观察,且,所以,从而 答案: 小炼有话说:本题抓住关于对称是关键,从而可由对称求得,使得所求式子只需考虑的范围即可例3:定义在上的奇函数,当时,则关于的函数的所有零点之和为( ) A. B. C
4、. D. 思路:为奇函数,所以考虑先做出正半轴的图像,再利用对称作出负半轴图像,当时,函数图象由两部分构成,分别作出各部分图像。的零点,即为方程的根,即图像与直线的交点。观察图像可得有5个交点:关于对称,且满足方程即,解得:,关于轴对称,答案:B例4:已知,函数的零点分别为,函数的零点分别为,则的最小值为( )A. B. C. D. 思路:从解析式中发现可看做与的交点,可看做与的交点,且,从而均可由进行表示,所以可转化为关于的函数,再求最小值即可解:由图像可得: 答案:B例5:已知函数有两个不同的零点,则( )A. B. C. D. 思路:可将零点化为方程的根,进而转化为与的交点,作出图像可得
5、,进而可将中的绝对值去掉得: ,观察选项涉及,故将可得:,而为减函数,且,从而,即答案:D例6:已知函数,存在,则的最大值为 思路:先作出的图像,观察可得:,所求可先减少变量个数,利用可得:,从而只需求出在的最小值即可:,所以函数在单增,在单减。从而 答案: 例7:已知定义在上的函数满足: ,且,则方程在区间上的所有实根之和为( )A. B. C. D. 思路:先做图观察实根的特点,在中,通过作图可发现在关于中心对称,由可得是周期为2的周期函数,则在下一个周期中,关于中心对称,以此类推。从而做出的图像(此处要注意区间端点值在何处取到),再看图像,可视为将的图像向左平移2个单位后再向上平移2个单
6、位,所以对称中心移至,刚好与对称中心重合,如图所示:可得共有3个交点,其中,与 关于中心对称,所以有。所以答案:C例8:函数,直线与函数的图像相交于四个不同的点,从小到大,交点横坐标依次记为,有以下四个结论 若关于的方程恰有三个不同实根,则的取值唯一则其中正确的结论是( )A. B. C. D. 思路:本题涉及到的取值,及4个交点的性质,所以先作出的图像,从而从图上确定存在个交点时,的范围是,所以正确。从图像上可看出在同一曲线, 在同一曲线上,所以在处理时将放在一组,放在一组。涉及到根的乘积,一方面为方程的两根,所以由韦达定理,可得,而为方程的两根,且,从而,即,所以有,正确 由中的过程可得:
7、,所以,从而,而, 设,则为增函数,所以正确可将问题转化为与的交点个数问题,通过作图可得的值不唯一综上所述:正确答案:A 例9:已知函数,若,且,则的值( )A. 恒小于2 B. 恒大于2 C. 恒等于2 D. 与相关思路:观察到当时,为单调函数,且时,的图像相当于作时关于对称的图像再进行上下平移,所以也为单调函数。由此可得时,必在两段上。设 ,可得,考虑使用代换法设,从而将均用表示,再判断与的大小即可。解:设,不妨设,则 若,则为减函数,且 若,则为增函数,且 的值恒大于2答案:B例10:定义函数,则函数在区间()内的所有零点的和为( ) A B C D 思路:从可得:函数是以区间为一段,其
8、图像为将前一段图像在水平方向上拉伸为原来的2倍,同时竖直方向上缩为原来的,从而先作出时的图像,再依以上规律作出的图像,的零点无法直接求出,所以将转化为,即与的交点。通过作图可得,其交点刚好位于每一段中的极大值点位置,可归纳出中极大值点为,所以所有零点之和为 答案:D小炼有话说:(1)本题考查了合理将轴划分成一个个区间,其入手点在于的出现,体现了横坐标之间2倍的关系,从而所划分的区间长度成等比数列。(2)本题有一个易错点,即在作图的过程中,没有发现恰好与相交在极大值点处,这一点需要通过计算得到:当时,从而归纳出规律。所以处理图像交点问题时,如果在某些细节很难通过作图直接确定,要通过函数值的计算来
9、确定两图像的位置三、近年模拟题题目精选1、(2016四川高三第一次联考)已知函数,若存在,当时,则的取值范围为( )A. B. C. D. 2、(2016,苏州高三调研)已知函数有且只有三个零点,设此三个零点中的最大值为,则_3、已知函数的零点分别为,则的大小关系是_4、已知函数的零点为,有使得,则下列结论不可能成立的是( )A. B. C. D. 5、已知,若方程有四个不同的解,则的取值范围是( )A. B. C. D. 6、已知函数,若存在实数,满足,且,则的取值范围是( )A. B. C. D. 习题答案:1、答案:C解析:如图可知: 2、答案:解析:,即与恰有三个公共点,通过数形结合可得:横坐标最大值为直线与曲线在相切的切点。设改点,的导数为,所以,代入到所求表达式可得:3、答案:解析: ,在同一坐标系下作出如图所示可得。令,解得,所以,从而4、答案:C解析:可判断出为减函数,则包含两种情况,一个是均小于零。可知当时,。所以的零点必在中,即,A选项可能;另一种情况为,则,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 南京信息工程大学《应用软件基础》2021-2022学年期末试卷
- 免疫室出科自我总结200字
- 2024年条码打印机全面维护服务协议
- 淀粉行业的技术改造与升级考核试卷
- 托儿所服务的交通与安全考核试卷
- 摩托车的车轮与轮胎考核试卷
- 创业空间的资金筹措与投融资考核试卷
- 淀粉行业战略合作与跨界融合发展研究考核试卷
- 市场需求与数字化渠道管理创新效果升级考核试卷
- 南京信息工程大学《宪法与行政法》2021-2022学年第一学期期末试卷
- S曲线和技术进化法则TRIZ专题培训课件
- 小学数学北师大四年级上册数学好玩 数图形的学问 省一等奖
- 运算放大器知识介绍课件
- LIS检验信息系统课件
- XRD结构解析基础课件
- CW6180C卧式车床说明书
- (完整版)内部控制风险评估表
- 未带有效居民身份证考生承诺书
- 《大海》 教学课件
- 木结构防腐措施及方法
- 卡通风小学班干部竞选自我介绍PPT模板
评论
0/150
提交评论