![交通工程学题库11版(计算题)_第1页](http://file2.renrendoc.com/fileroot_temp3/2021-11/10/290b0c9c-1b08-4d54-81cb-b3a54a66e577/290b0c9c-1b08-4d54-81cb-b3a54a66e5771.gif)
![交通工程学题库11版(计算题)_第2页](http://file2.renrendoc.com/fileroot_temp3/2021-11/10/290b0c9c-1b08-4d54-81cb-b3a54a66e577/290b0c9c-1b08-4d54-81cb-b3a54a66e5772.gif)
![交通工程学题库11版(计算题)_第3页](http://file2.renrendoc.com/fileroot_temp3/2021-11/10/290b0c9c-1b08-4d54-81cb-b3a54a66e577/290b0c9c-1b08-4d54-81cb-b3a54a66e5773.gif)
![交通工程学题库11版(计算题)_第4页](http://file2.renrendoc.com/fileroot_temp3/2021-11/10/290b0c9c-1b08-4d54-81cb-b3a54a66e577/290b0c9c-1b08-4d54-81cb-b3a54a66e5774.gif)
![交通工程学题库11版(计算题)_第5页](http://file2.renrendoc.com/fileroot_temp3/2021-11/10/290b0c9c-1b08-4d54-81cb-b3a54a66e577/290b0c9c-1b08-4d54-81cb-b3a54a66e5775.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1、已知行人横穿某单行道路所需的时间为9秒以上,该道路上的机动车交通量为410辆/小时,且车辆到达服从泊松分布,试问:从理论上说,行人能横穿该道路吗?为什么?如果可以横穿,则一小时内行人可以穿越的间隔数有多少?(提示:e=2.718,保留4位有效数字)。解:从理论上说,行人不能横穿该道路。因为该道路上的机动车交通量为:Q=410Veh/h,则该车流的平均车头时距 h: = 3600 = 3600 =8.7805s/Veh,而行人横穿道路所需的时间tt Q 410为9s以上。由于ht ( 8.7805s)<t(9s),因此,所有车头时距都不能满足行人横穿该道路 所需时间,行人不能横穿该道路
2、。 但由于该道路上的机动车交通量的到达情况服从泊松分布,而不是均匀分布,也就是说并不是每一个 ht都是8.7805s。因此,只要计算出1h内的车头时距ht >9s的数量,即可得到行人可以穿越的间隔数。按均匀到达计算,1h内的车头时距有 410个(3600/8.7805),则只要计算出车头时距 ht >9s的概率,就可以1h内行人可以穿越的间隔数。负指数分布的概率公式为:P(ht t)= et/3600,其中t=9s。车头时距 ht >9s 的概率为:P(ht9)= 2.718 10 9 3600 = 2.718 “025 =0.35881h内的车头时距 ht >9s的数
3、量为:410 0.3588=147个答:1h内行人可以穿越的间隔数为 147个。2、某信号控制交叉口周期长度为90秒,已知该交叉口的某进口道的有效绿灯时间为45秒,进口道内的排队车辆以1200辆/小时的饱和流量通过交叉口,其上游车辆的到达率为400辆/小时,且服从泊松分布,试求: 1) 一个周期内到达车辆不超过10辆的概率;2)周期到达车辆不会两次停车的概率。解:题意分析:已知周期时长C0 = 90 S,有效绿灯时间 G= 45 S,进口道饱和流量 S= 1200Veh/h。上游车辆的到达服从泊松分布,其平均到达率=400辆/小时。由于在信号控制交叉口,车辆只能在绿灯时间内才能通过。所以,在一
4、个周期内能够通过交叉口的最大车辆数为:Q周期 = GX S= 45X 1200/3600 = 15辆。如果某个周期内到达的车辆数N小于15辆,则在该周期不会出现两次停车。所以只要计算出到达的车辆数N小于10和15辆的概率就可以得到所求的两个答案。在泊松分布中,一个周期内平均到达的车辆数为:口t = 400 90 =10辆3600根据泊松分布递推公式P(0)= e , P(k 1)=P(k),可以计算出:P(0)= e=2.71828,0 =0.0000454 ,P(1)= 100.0000454 = 0.00045401P(2)= 10 0.00045402= 0.0022700 ,P(3)=
5、130 o.00227 认075667P(4)= 10 0.00756674= 0.0189167 ,P(5)= 10 0.0189167 =0.03783345P(6)= 10 0.03783346= 0.0630557 ,P(7)= 10 0.0630557 二 0.0900796P(8)= 10 0.0900796 =0.1125995 ,8P(9)= 10 0.1125995 =0.12511069P(10)= 10 0.1251106 =0.1251106 ,10P(11)= 10 0.1251106 =0.11376911110P(12)=0.1137691 =0.0948076
6、,1210P(13)=0.0948076 = 0.072928913P(14)= 10 0.0729289 二 0.0520921 ,14P(15)= 10 0.0520921 = 0.034728115所以:P( E10)= 0.58 ,P(空 15)=0.95答:1) 一个周期内到达车辆不超过10辆的概率为5 8 % 2)周期到达车辆不会两次停车的概率为9 5%。3、某交叉口信号周期为 40秒,每一个周期可通过左转车 2辆,如左转车流量为 220辆/ 小时,是否会出现延误(受阻)?如有延误,试计算一个小时内有多少个周期出现延误;无延误则说明原因。(设车流到达符合泊松分布 )。解:1、分析题
7、意:因为一个信号周期为 40s时间,因此,1h有3600/40=90个信号周期。又因为每个周期可通过左转车2辆,则1h中的90个信号周期可以通过 180辆左转车,而实际左转车流量为 220辆/h,因此,从理论上看,左转车流量呈均匀到达,每个周期肯定 都会出现延误现象,即1h中出现延误的周期数为 90个。但实际上,左转车流量的到达情况符合泊松分布,每个周期到达的车辆数有多有少,因此,1h中出现延误的周期数不是90个。2、计算延误率左转车辆的平均到达率为:入=220/3600 辆/s ,则一个周期到达量为:m" t=40*220/3600=22/9 辆4只要计算出一个周期中出现超过2辆左
8、转车的概率,就能说明出现延误的概率。根据泊松分布递推公式P(0)= e , P(k 1)= P(k),可以计算出:k +1P(0)= e=e22 =0.0868 , P(1)= mP(0) =(22/9) 0.0868 = 0.2121P(2)= m/2 P(1) =(22/9)/2 0.212仁 0.2592 ,P(_2)= P(0) P(1) P(2) =0.0868 0.2121 0.2592 = 0.5581P( -2)=1 -P任 2) =1 -0.5581 =0.44191h中出现延误的周期数为:90*0.4419=39.771疋40个答:肯定会出现延误。1h中出现延误的周期数为
9、40个。4、在一单向1车道的路段上,车辆是匀速连续的,每公里路段上(单向)共有20辆车,车速与车流密度的关系符合 Greenshields的线性模型,阻塞的车辆密度为 80辆/公里,自 由流的车速为80公里/小时,试求:1) 此路段上车流的车速,车流量和车头时距;2)此路段可通行的最大流速;3)若下游路段为单向辆车道的道路,在这段路上,内侧车道与外侧车道的流量之比为1: 2,求内侧车道的车速。假设车速与车流密度成仍符合 Gree nshield的线性模型,每个车道的阻 塞的车流密度为 80辆/公里,自由流的车速为 80公里/小时。解:1)Greenshields的速度一密度线性关系模型为:KV
10、 二Vf(1 -丄)Kj由已知可得: Vf =80 km/h, K j = 80 辆/km, K=20辆/km20 V= 80 (1 ) =60 km / h80 流量一密度关系:KQ=KVf (1) = KV = 2060 =120 辆/hKj3600 3600 _ 车头时距:ht =3sQ 1200Vf 802) 此路段可通行的最大流速为:Vm- =80 = 40 km/h2 213) 下游路段内侧车道的流量为:Q内=1200= 400辆/hK代入公式:Q=K/f(1 一丄)Kj1得:400= K 汉 80(1)80解得:K1 = 5.4 辆/km, K2 =74.6 辆/km由:v =V
11、f () Kj可得:Vj = 74.6km/h , V2 =5.4km/h答:1)此路段上车流的车速为60 km/ h,车流量为120辆/h,车头时距为3s。2)此路段可通行的最大流速为 40 km/h3)内侧车道的速度为 74.6km/h或5.4km/h。5、汽车在隧道入口处交费和接受检查时的饱和车头时距为3.6秒,若到达流量为 900辆/小时,试按M/M/1系统求:该入口处的平均车数、平均排队数、每车平均排队时间和入口处车数不超过10的概率。解:按M/M/1系统:1 =900辆/小时,辆/s=1000辆/小时3.6门 九 900、0.9 <1,系统是稳定的。J 1000 该入口处的平
12、均车辆数:9辆 ' - '1000 -900- Pn = 1=9 -0.9 = 8.1 辆 平均排队数:q = n - 平均消耗时间:n 9 d3600 二 3.6 s/ 辆丸 9001每车平均排队时间:w = d = 36-3.6 = 32.4 s/ 辆 入口处车辆不超过10的概率:10P(乞 10)P(10) = 0.34n卫答:该入口处的平均车辆数为9辆,平均排队数为8.1辆,每车平均排队时间为 32.4 s/辆,入口处车辆不超过 10的概率为0.34。6、设有一个停车场,到达车辆为50辆/小时,服从泊松分布;停车场的服务能力为 80辆/ 小时,服从负指数分布;其单一的出
13、入道能容纳5辆车。试问:该出入道是否合适?(计算过程保留3位小数)解:这是一个M/M/1的排队系统。由于该系统的车辆平均到达率:入=50 Veh/h,平均服务率:卩=80 Veh/h,则系统的(3 分)服务强度为:P =入/卩=50/80 = 0.625 < 1。系统稳定。由于其出入道能容纳 5辆车,如果该出入道超过5辆车的概率很小(通常取小于5%),9#(2分)则认为该出入道合适,否则就不合适。根据M/M/1系统中有n辆车的概率计算公式:P (n)(1 -)(7 分)P (0) = (1 - ) = 1- 0.625 = 0.375;2 2P (2)(1 - )= 0.625 0.37
14、5 =0.146P (4)=匸4(1 一 -?)= 0.6254 0.375=0.0575该出入道小于等于 5辆车的概率为:an=SP (1)=讥1 一 讨=0.625 0.375 = 0.234P (3) ?3( ')= 0.6253 0.375 二 0.092P (5)沖-丸位弓 0.375 = 0.036P(n) = P(0)+P(1)+P(2)+P(3)+P(4)+P(5)=0.945该出入道超过 5辆车的概率为:P(>5) = 1-7 P(n) =1-0.94 = 0.06n =0答:由于该出入道超过 5辆车的概率较大(大于 5%),因此该出入道不合适。7、某主干道的车
15、流量为360辆/小时,车辆到达服从泊松分布,主要道路允许次要道路穿越的最小车头时距为 10秒,求:1)每小时有多少可穿越空档? 2)若次要道路饱和车流的平均车头时距为 5秒,则次要道路车辆穿越主要道路车辆的最大车辆数为多少?(本次复习不作要求。如果同学们有兴趣可以参考教材P112的例题8-6 )。8、某交叉口进口道,信号灯周期时间T=120秒,有效绿灯时间 G=60秒,进口道的饱和流量为1200辆/小时,在8:30以前,到达流量为500辆/小时,在8:30 9:00的半个小时内,到达流量达到650辆/小时,9:00以后的到达流量回复到8:30以前的水平。车辆到达均匀且不考虑车辆停车位置向上游延
16、伸而产生的误差。试求:1)在8: 30以前,单个车辆的最大延误时间,单个车辆的平均延误时间、停车线前最大排队车辆数、排队疏散与持续时间。2)在& 30以后,何时出现停车线前最大排队?最大排队数为多少?3)在9:00以后,交通何时恢复正常(即车辆不出现两次排队)?解:1)在8: 30以前 绿灯刚变为红灯时到达的那辆车的延误时间最大:dm=T-G=120-60=60s 单个车辆的平均延误时间:d =0.5(T-G)=0.5( 120-60)=30s 红灯时段,车辆只到达没有离去,因此在红灯刚变为绿灯时排队的车辆数最多,为:q=. (T-G)=500(120 -60)=竺,9 辆36003
17、由=1200辆/小时,=500辆/小时,得排队疏散时间:Q9t 疏散3600 = 46.3 s卩人(1200 500) 排队持续时间:t持续=T G+ t疏散=120 - 6046.3 = 106.3s2) 在& 30以后,一个周期120s内,到达的车辆数为:Q到=650 : 22 辆36003由于车辆只能在有效绿灯时间60s内通过,所以一个周期离开的车辆数为:Q 离=12006020 辆3600.一个周期内有22-20=2辆车出现两次排队,在 8: 30到9: 00之间的最后一 个周期内红灯刚变为绿灯时,停车线前出现最大排队,最大排队数为:Q 排 m =2 空020 =50 辆120
18、3)在9: 00以后,停车线上进行二次排队的车辆有30辆,而在一个在周期内,到500 12050达车辆为:17辆36003假设在9: 00后第N个周期内恢复正常,可得:30+17N=20N解得: N=10答:1)单个车辆的最大延误时间为60s,单个车辆的平均延误时间为30s,停车线前最大排队车辆数为 9辆,排队疏散时间为 46.3s,持续时间为106.3s。2)在& 30以后,到9: 00之间的最后一个周期内红灯刚变为绿灯时,停车线前出现最大排队,最大排队数为:50辆。3)在9: 00以后,交通在第10个周期内恢复正常。9、设信号交叉口周期C= 130秒,有效红灯 R= 60秒,饱和流
19、量 S=1800辆/小时,到达流量在红灯前段22.5秒为918辆/小时,在周期内其余时段为 648辆/小时,停车密度为100 辆/公里,v-k服从线性模型,试用车流波动理论计算排队最远处上的位置。解:当信号变为红灯时, 车队中的头车开始减速, 并逐渐在停车线后停下来,这就产生一个象征停车的交通波 (压缩波)从前向后在车队中传播。设车队原来的速度为 V ,密度为K1 ,标准化密度为1 = K1。波传过后,速度为V2 =0,密度为 K2 = K j ,标准化密度K22=1,由:KjKV 二Vfd ),VwK ;VK -v2k2Q _ k212#可得:Vw -Vf 1- ( 1+ 2)假设t=0时,
20、信号在X=X0(停车线)处变红灯,则在t= t1=22.5s时,一列长度为Vf 1t1的车队停在X。之后。又;Kj =100辆/公里,22.5s内车辆到达车辆数为:918 22.53600停车长度为:91822.5 =0.06 km3600 100918 況 22.5 VfSt13600 1003600解得:Vf 1=9.18 km/h#Vw = Vf 1 =-9.18 km/h#又;Q2 - Qi即:-9.18=648 -918100 - Ki10003600所以该系统是稳定的。1)该系统车辆的平均排队长度:q二或者:该入口处的平均车辆数:(5分)(1分)解得:心=70.6辆/公里由Q=KV
21、得:648V=9.2 km/h70.660 -22.5亠S=VT=9.2=95.810 km3600排队总长度为:L=0.06+95.810 "=155.810 " km=155.8m答:排队最远处上的位置为离停车线155.8m处。10、已知某高速公路入口处只有一个收费窗口工作,该收费窗口的服务能力为1200辆/小时,服从负指数分布,收费窗口前的车辆到达率为 1000辆/小时,且服从泊松分布。 假定 某时刻该窗口前已有 10辆车正在排队。试求:1 )该系统车辆的平均排队长度; 2)该系统 车辆排队的平均消耗时间;3)该系统车辆的平均等待时间; 4)该时段车辆排队的消散时间。
22、解:从已知条件可以看出,这是一个M/M/1系统。车辆到达率为: =1000辆/小时=离开率:二-1200 =1 辆/s ;'/、'-(色)/(丄)= : 1 ,36003183613#平均排队长度:q二n -=5-0.83 = 4.17辆-11(1分)2)该系统车辆排队的平均消耗时间:d丄丄18 S1 _ 5318n 5或者:d = = 3600 = 18 s/ 辆九 100053)该系统车辆的平均等待时间:w1815 S(1分)咿-罚1 5)3 3 181或者:w = d 18 3 = 15 s/ 辆而该时刻在窗口前正在排队有10辆车。(1分)因此,车辆排队的消散时间:t=1
23、0/200 = 0.05 小时=180 S(1分)1010t3600 -180s4)由于该时段的消散能力为:卩一入= 1200 - 1000= 200辆/小时,(1分)1200 -1000答:1)该系统车辆的平均排队长度为4.1667辆;2)该系统车辆排队的平均消耗时间为18 S; 3)该系统车辆的平均等待时间为15 S; 4)由于该时段的消散能力为180 S (1分)1 1、已知某公路上自由流速度V为80km/h,阻塞密度K为100辆/km,速度和密度的关系符合格林希尔茨的线性关系。试问:该路段上期望得到的最大交通量是多少?所对应的车速是多少?解:根据交通流总体特性Qm = Km Vm,其中
24、:Km所以,最大交通量为:J00 80 =2000辆/h44对应的车速为临界车速:=80/2 =40 km/h。212、道路瓶颈路段的通行能力为1300辆/h,高峰时段1.69h中到达流量为1400辆/h,然后到达流量降到650辆/h,试利用连续流的排队与离驶理论计算。(1)拥挤持续时间tj。(2)拥挤车辆总数N。(3)总延误Db(4) tj内每车平均延误时间do解:由题意可知:(1) 通过上面有拥挤持续时间tj: tj =1.69 ( h )(2) 拥挤车辆总数 N高峰小时的车流量 Q (1400辆/h ) 通行能力Q(1300辆/h),出现拥挤情况。因此,车辆总数 N= Q1 一。1.69
25、 二 1400 -1300 1.69 "69 (辆)(3) 总延误D高峰小时过后,车流量Q=650辆/h V通行能力1300辆/h,排队开始消失。疏散车辆的能力为:Q3-Q2 =65° "30° =-650 (辆/h )t,(Q1-Q2)侮,169 =0.26因此消散所需时间为:|Q3 - Q2650( h )总出现的阻塞时间t = t 1.69 = 0.26 T.69 =1.95 ( h )因此,总延误 D: D = N " =169 汉1.95 = 329.55 圧 330 (辆 h )d = tj J.69。“.01(4) tj内每车平均
26、延误时间 d:N 169h=36S13、假定某公路上车流密度和速度之间的关系式为:V=35.9In(180/k),其中速度V以km/h计,密度K以辆/km计,试计算:(1)车流的阻塞密度和最佳密度?(2)计算车流的临界速度? ( 3)该公路上期望的最大流量?解:由题意可知:初始的情况为V=35.9l n(180/k)(1)交通流公式有当 V=0 时,K = Kj-90(辆 /km)。180lKf80 (辆 /km),则所以车流的阻塞密度为180辆/km,最佳密度为90辆/km。(2 )格林柏的对数模型为:V 二Vmln(0)K所以:V=35.9l n(180/k)=180VJn(),KVm =
27、35.9(km/h)16车流的临界速度为35.9 km/h。(3)公路上期望的最大流量为.Qm =VmKm =35.9 90 =3231 ( km/h )14、在一条长度为24公里的干道起点断面上,于 6分钟内观测到汽车100辆通过,设车流 是均匀连续的且车速 V=20公里/小时,试求流量(q)、车头时距(ht)、车头间距(hs)、密度 (K)以及第一辆汽车通过此干道所需时间 。解:由交通流理论可知6/60车流量位: Q = 100 =1000 ( km/h)车头时距:36003600任h3.6( s/ 辆)Q1000车头间距:V20hsht3.6 - 20 ( m/辆)3.63.6车辆密度:
28、,/10001000“任K50 (辆 /km)hs20第一辆汽车通过此干道所需时间:S 24t1.2V 202起交通事故。试问:此路段明年发生事故 5起的概 有1/4不遵守红灯停车的规定, 问5人中有2人不遵15、某路段10年的统计,平均每年有 率是多少?又某交叉口骑自行车的人, 守交通规定的概率是多少? 解:由题意可知:k -mm e(1)由公式P(k)=k!25P(5) = 5!25 2.718332 0.13530.02754321160此路段明年发生事故5起的概率是0.027。、 1(2) m =5 =1.25 (人)4/曰1.252e251.25= 2.7183 丄251.5625
29、汉 0.2865得,P(2)0.2242!2 汉125人中有2人不遵守交通规定的概率是0.224。2辆,如左转车流量为 220辆/16、某交叉口信号周期为40秒,每一个周期可通过左转车小时,是否会出现延误(受阻),如有延误,试计算占周期长的百分率,无延误则说明原因(设车流到达符合泊松分布)。解:由题意可知:起初的时间为t=40s,一个周期内平均通过左转的车辆数:°220 汉 40m = - t2.4辆 2辆因此,会出现延误。3600k -mm em由公式 P(k),P(k -1) = P(k),k!k +10-m得,P(0Hm = 2.7183 少=0.0910!mm2.4P(1)P
30、(0) =2.4 0.091 =0.218P(2)P(1)0.218=0.2621!22P( 2) =1 P(乞 2) =1 P(0) P(1) P(2) =1 0.091 0.218 0.262 =0.429延误占周期长的百分率为0.429。17、已知某交叉口的定时信号灯周期长80s,一个方向的车流量为540辆/h,车辆到达符合泊松分布。求:(1) 计算具有95%置信度的每个周期内的来车数;(2) 在1s, 2s, 3s时间内有车的概率。解:由题意可知:(1 )计算具有95 %置信度的每个周期内的来车数:周期为c=80( s),q=540 (辆/h),车辆到达符合泊松分布:=12 (辆)、5
31、4080m = t = qc =3600k -mm e(2)公式 p(k)二丄- k!540 X 1在1s时间内,m = 't0.15(辆)36000-m得,P(0)2.7183 恥=0.86070!P( 0) =1 -P(0) =1-P(0) =1 -0.8607 =0.1393540 疋 2 在2s时间内,m =0.3 (辆)36000-m得,P(0)=旦 = 2.7183 皿=0.74080!P( 0) = 1 - P(0) = 1 - P(0) = 1 - 0.7408 二 0.2592540 汉 3 在3s时间内,m='t0.45 (辆)36000-m得,P(0)=卫 = 2.7183 g =0.63760!P( 0) =1 - P(0) =1 - P(0) = 1 - 0.6376 = 0.3624在1s,2s,3s时间内有车的概率分别为:0.1393、0.2592、0.3624。18、车流在一条单向双车道公路上畅通行驶,速度为100km/h,由于突发交通事故,交通管制为单向单车道通行,其通行能力为1200辆/h,此时正值交通高峰,单向车流量为2500辆/h。在发生交通事故的瓶
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山西省2024七年级道德与法治上册第二单元成长的时空第四课幸福和睦的家庭情境基础小练新人教版
- 2025年临时租房协议考研范文(2篇)
- 2025年仓储租赁合同例文(三篇)
- 游戏厅装修工程协议
- 主题公园商铺居间合同
- 体育馆装修施工合同协议书
- 盐田古典声学装修施工方案
- 机场候机厅墙面装修协议
- 木材短途运输协议
- 服装店内部装修项目协议
- Unit 2 Last weekend C Story time (教学设计)人教PEP版英语六年级下册
- 2024年上海市普通高中学业水平等级性考试化学试卷(含答案)
- DZ∕T 0153-2014 物化探工程测量规范(正式版)
- 奥派直播电商仿真实训软件操作手册
- 2024年度-美团新骑手入门培训
- 化妆品祛痘功效评价
- 语文新课标背景下单元整体教学:六下第4单元大单元设计
- 高一数学寒假讲义(新人教A专用)【复习】第05讲 三角函数(学生卷)
- 皮下注射的并发症及预防
- 罗沙司他治疗肾性贫血的疗效与安全性评价演示稿件
- 农村高中思想政治课时政教育研究的中期报告
评论
0/150
提交评论