下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高考前排列组合与概率概率易错问题辨析一、 交点:圆内还是圆外 例1. 圆周上有12个不同的点,过其中任意两点作弦,这些弦在圆内的交点个数是_ 错解:因为两条直线相交有且只有一个交点,从12个点中任取2个可确定条直线,从剩下10个点中任取2个可确定条直线,根据乘法原理,有个交点。这里错误的原因在于这些直线所产生的交点有可能在圆外了,而题目要求这些交点在圆内。 正解:因为两条直线相交有且只有一个交点,任意一个凸四边形在圆内的交点即为两条对角线的交点,有且只有一个。而要得到一个四边形,需要从12个点中取出4个点,个,即有个交点。 问题:若“圆内”改成“圆外”,其他不变,则交点个数是多少?(答案:)或
2、二、相邻不相邻问题:不重不漏 例2. 8人排成一队,A、B、C三人互不相邻,D、E两人也互不相邻的排法共有多少种? 错解:第一步:把除A、B、C、D、E的剩余F、G、H3人全排列,有种方法;第二步:前3人排好后,留下4个空档,把A、B、C三人插入,有种方法;第三步:前6人排好后,留下7个空档,把D、E两人插入空档,有种方法。由乘法原理,有种方法。 则题意,“ADB”排法也满足题意,但按照以上排法,A、B之间早就有F或G或H了,而不可能出现“ADB”,违反“不重不漏”中的“不漏”原则。 正解:用排除法。除A、B、C外的5人先全排列,有种方法,这时在留下的6个空档中插入A、B、C三人,有种插空方法
3、,共有种方法;其中应排除D、E两人相邻的情形,把D、E(运用“捆绑法”看作一个个体),F、G、H(F、G、H为余下的三人)全排列,有种方法,这时在留下的5个空档中插入A、B、C三人,有种方法,DE也可交换成ED,共有种方法。所求排法有14400288011520种。 例3. 有20个零件,其中16个是一等品,4个二等品。若从20个零件中任取3个,那么至少有1个是一等品的概率是_。 A. B. C. D. 以上都错 错解:选项A中表示只取1个一等品,而题目要求取一等品1个、或2个、或3个,有三种情形;C中表示只取2个一等品,表示只取3个一等品,即只取2个或3个一等品,与题目不符。 B中表示从16
4、个一等品中先取1个一等品,表示再从剩下的19个零件中取2个,这时似乎能保证所取的3个零件中至少有1个是一等品。若设1、2、16表示16个一等品,A、B、C、D表示4个二等品,可能出现1、2、A形式(先取一等品1,再从剩下的19个零件中取2、A),也可能出现2、1、A形式(先取一等品2,再从剩下的19个零件中取1、A),违反“不重不漏”中的“不重”原则。 正解:在选项A的基础上增加先从16个一等品中取2个,再从4个二等品取1个,和从16个一等品中取3个,有种取法,答案应为,选D。也可以运用排除法,“至少有1个是一等品”的反面是“没有一个一等品”,即3个都是二等品,有,答案为,选D。三、抽取问题:
5、放回与不放回 例4. 从一批含有13只正品、2只次品的产品中,不放回地抽取3次,设抽得的次品数为,求E(51)。 错解一:随机变量服从二项分布B(n,p),这里独立重复试验的次数n3,在一次试验中事件(次品)发生的概率,得 。 分析:若变量是离散型随机变量,才服从二项分布,才会有公式E()np,那么怎么样的变量才是离散型的呢?对于随机变量可能取的值,可以按一定次序一一列出,像这样的随机变量叫做离散型随机变量。若在一次随机试验中,某事件可能发生也可能不发生,在n次独立重复试验中这个事件发生的次数则是一个随机变量。如果在一次试验中某事件发生的概率是p,那么在n次独立重复试验中某事件发生的概率是p,
6、那么在n次独立重复试验中这个事件恰好发生k次的概率p(k),其中k0;1,n,称这样的随机变量服从二项分布,记作B(n,p)。上面式子,形式上为二项式定理中的第项,所以称服从二项分布。 由上可以看出,二项分布的必要条件是随机变量必须是独立的,而本题中变量与前后有关系,是不独立的,所以题中的变量不服从二项分布,不能用E()np来算。 错解二:因为不放回地取,先组合再排列,所以, , 得, 分析:对于1这种情形,表示从13只正品中取一只正品后(不放回),再接着从剩下的12只正品中取一只正品(不放回)。表示从2只次品取1只次品。这时,对这3只产品作全排列,得。其实,13只正品被抽取的机会是均等的,取
7、得的2只正品前后没有关系,应视作一种情形,只要看1只次品所取的位置,所以,同理 , 问题:若原题中“不放回”改为“放回”,其他不变,求。 分析:对于这种情形,表示从13只正品中取一只正品(放回),再接着从13只正品中取一只正品(放回)。表示从2只次品中取1只次品。这时再考虑次品所取的位置,共有×3种取法,所以。同理: , 四、倒球、颜色相同与不同 例5. 从装有4粒大小、形状相同、颜色不同的玻璃球的瓶中,随意倒出若干粒玻璃球(至少一粒),设倒出奇数粒玻璃球的概率为a,设倒出偶数粒玻璃球的概率为b,比较a与b大小关系。 错解:因为倒出球的个数为1、2、3、4,恰好是两个奇数两个偶数,所
8、以ab。 分析:题中为什么要注出“颜色不同”?同样是倒出一粒球,若颜色不同,则应视作是不同的情形。 记倒出的玻璃球的个数为n,则当n1时,种情形;当n2时,有种情形;当n3时,种情形;当n4时,有种情形;现总样本数为464115,所以,得。 练习1 某招呼站,每天均有3辆开往省城的分为上、中、下等级的客车,某天袁先生准备在该招呼站乘车前往省城办事,但他不知道客车的车况,也不知道发车顺序,为了尽可能乘上上等车,他采取了如下策略:先放过第一辆,如果第二辆比第一辆好则上第二辆,否则上第三辆。那么他乘上上等车的概率是多少?(用列举法,) 练习2 排球比赛的规则是5盘3胜制,甲、乙两队每盘获胜的概率分别
9、为。(1)若前两盘中乙队以2:0领先,求最后甲、乙各队各自获胜的概率;(2)求乙队以3:2获胜的概率。(1)P(甲胜),P(乙胜);(2)P(乙以3:2胜)。用递推法求概率 概率是高中数学新增的内容。由于它在理论与实际中都有很重要的意义,因此已成为近年高考命题的一个热点。下面介绍几例出现在各地模拟试题中用递推思想方法探求概率的问题,不仅体现数列与概率知识的交汇性,而且有利于培养同学们的解题能力和创新能力。 例1. A、B二人拿出两颗骰子做抛掷游戏,规则如下:若掷出的点数之和为3的倍数时,原掷骰子的人再继续掷;若掷出的点数不是3的倍数时,就由对方接着掷。第一次由A开始掷,若第n次由A掷的概率为,
10、求。 解:第次由A掷这一事件,包括第n次由A掷、第次继续由A掷这一事件以及第n次由B掷、第次由A掷这一事件。这两个事件发生的概率分别是 由于这两个事件是互斥的,则 易知 由递推式得: 所以数列是以为首项,为公比的等比数列。 所以 即 例2. 从原点出发的某质点M,按向量移动的概率为,按向量移动的概率为,设质点M可到达点(0,n)的概率为。 (1)求和的值; (2)求证; (3)求的表达式。 解:(1)由题意知: (2)证明M到达点(0,n+2)有两种情况: 从点按向量移动,概率为; 从点(0,n)按向量移动,概率为。 故 从而有 (3)由(1)、(2)的递推关系知:数列是以为首项,为公比的等比
11、数列。 所以 故 所以 所以 例3. 如图,个不同的数随机排成一个三角阵,设是从上往下数第K行中的最大数,求的概率。解:设所求的概率为的概率为,而最大数在第n行的概率为: 于是 又 以上各式相乘,得: 所以的概率 与几何有关的概率问题4.平面上两个质点、分别位于(0,0),(2,2),在某一时刻同时开始,隔1秒钟向上下左右任一方向移动1个单位,已知质点A向左右移动的概率都是,向上下移动的概率分别是和,质点B向各个方向移动的概率是.求:(1)4秒钟后到达(1,1)的概率;(2)三秒钟后,、同时到达(1,2)的概率.4. 用表示向上的概率等等,质点A要在4秒钟到达,必须用2秒钟完成一次向上和向右的
12、移动,另外2秒用于完成一个左右或上下的来回移动,因此,质点经过4秒钟到达的路线就对应“上右上下”或“上右左右”的一个排列。反之容易验证,上述任意一排列,都对应经过4秒钟后到达的一条路线,而“上右上下”和“上右左右”的排列数都是,由此,所求的概率为:(2)仿(1)可知,经过3秒A到达D的概率为;B到达D的概率为所以3秒后,A、B同时到达D的概率为5. 设棋子在正四面体ABCD的表面从一个定点移向另外三个定点是等可能的。现抛掷骰子根据其点数决定棋子是否移动:若投出的点数是奇数,则棋子不动;若投出的点数是偶数,棋子移动到另一定点。若棋子的初始位置在定点A,回答下列问题。(1)投了2次骰子,棋子才到达
13、定点B的概率是多少?(2)投了3次骰子,棋子恰巧在顶点B的概率是多少?分析:依题意知棋子移与不移的概率都是1/2,移的情形中向另外三个顶点动的概率均为1/3。(1)“投了2次骰子,棋子才到达顶点B”包含两种情况:“第一次不动,第二次移到点B”、“第一次移到C或D,第二次移到B”,所求概率为 P= ·· + ··· = (2)“投了3次骰子,棋子恰巧在顶点B”包含三种情况: “三次中棋子恰移到一次”、 “三次中棋子恰移到两次” 、“三次中棋子恰移到三次”所求概率为 P = 3·()3· + 3·()3·2·
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 室内设计装修合同协议-双方权利义务明确规定
- 医院人力资源管理系统项目解决方案
- 2024年采购合同锦集
- 专利申请权转让合同协议范本
- 房地产公司合同管理规范
- 代理商股份合作合同范本精讲
- 十万短期借款合同
- 中国银行总行异地直贷项目委托代管合约
- 2024年电影独家买断发行合同样本
- 整厂出售与合作协议书
- 经修订的国际救生设备规则(LSA)
- 位移观测记录表
- 工艺纪律检查管理办法及考核细则
- 成都关于成立芯片公司组建方案(模板参考)
- 采购项目验收管理办法(共10页)
- 【燃气规范】家用燃气燃烧器具安装及验收规程(CJJ12-2013)
- 《工程计量报验单》
- 小学文言文实词虚词总结(共16页)
- 资本的剩余价值
- 黑龙江小学五年级第5单元第4课第3节_《就英法联军远征中国给巴特勒上尉的信》
- T∕CREA 005-2021 老年人照料设施与适老居住建筑部品体系标准
评论
0/150
提交评论