复合函数与隐函数求导法课件_第1页
复合函数与隐函数求导法课件_第2页
复合函数与隐函数求导法课件_第3页
复合函数与隐函数求导法课件_第4页
复合函数与隐函数求导法课件_第5页
已阅读5页,还剩55页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 第八章 第四节机动 目录 上页 下页 返回 结束 二、一个方程所确定的隐函数二、一个方程所确定的隐函数 及其导数及其导数 三、方程组所确定的隐函数组三、方程组所确定的隐函数组 及其导数及其导数复合函数与隐函数的求导方法 复合函数求导法则复合函数求导法则先回忆一下一元复合函数的微分法则先回忆一下一元复合函数的微分法则可可导导而而若若)()(xuufy 则复合函数则复合函数 )(xfy 对对 x 的导数为的导数为dxdududydxdy 这一节我们将把这一求导法则推广到多元函这一节我们将把这一求导法则推广到多元函数的情形,主要介绍多元复合函数的微分法和隐数的情形,主要介绍多元复合函数的微分法和隐

2、函数的微分法。我们知道,求偏导数与求一元函函数的微分法。我们知道,求偏导数与求一元函数的导数本质上并没有区别,对一元函数适用的数的导数本质上并没有区别,对一元函数适用的微分法包括复合函数的微分法在内,在多元函数微分法包括复合函数的微分法在内,在多元函数微分法中仍然适用,那么为什么还要介绍多元微分法中仍然适用,那么为什么还要介绍多元复合函数的微分法和隐函数的微分法呢?复合函数的微分法和隐函数的微分法呢?这主要是对于没有具体给出式子的所谓抽象函数这主要是对于没有具体给出式子的所谓抽象函数如如),(22xyyxfz 它是由它是由),(vufz xyvyxu ,22及复合而成的复合而成的由于由于 f

3、没有具体给出没有具体给出时时在求在求yzxz , 一元复合函数的微分法则就无能为力了,为一元复合函数的微分法则就无能为力了,为此还要介绍多元复合函数的微分法和隐函数的此还要介绍多元复合函数的微分法和隐函数的微分法。微分法。一、链式法则一、链式法则定理如果函数定理如果函数)(tu 及及)(tv 都在点都在点t可可导,函数导,函数),(vufz 在对应点在对应点),(vu具有连续偏具有连续偏导数,则复合函数导数,则复合函数)(),(ttfz 在对应点在对应点t可可导,且其导数可用下列公式计算:导,且其导数可用下列公式计算: dtdvvzdtduuzdtdz 证证,获得增量获得增量设设tt ),()

4、(tttu 则则);()(tttv 由由于于函函数数),(vufz 在在点点),(vu有有连连续续偏偏导导数数,21vuvvzuuzz 当当0 u,0 v时时,01 ,02 tvtutvvztuuztz 21 当当0 t时时, 0 u,0 v,dtdutu ,dtdvtv .lim0dtdvvzdtduuztzdtdzt 上定理的结论可推广到中间变量多于两个的情况上定理的结论可推广到中间变量多于两个的情况.如如dtdwwzdtdvvzdtduuzdtdz zuvwt以上公式中的导数以上公式中的导数 称为称为dtdz 上定理还可推广到中间变量不是一元函数上定理还可推广到中间变量不是一元函数而是多

5、元函数的情况:而是多元函数的情况:).,(),(yxyxfz 如如果果),(yxu 及及),(yxv 都都在在点点),(yx具具有有对对x和和y的的偏偏导导数数,且且函函数数),(vufz 在在对对应应点点),(vu具具有有连连续续偏偏导导数数,则则复复合合函函数数),(),(yxyxfz 在在对对应应点点),(yx的的两两个个偏偏导导数数存存在在,且且可可用用下下列列公公式式计计算算 xvvzxuuzxz , yvvzyuuzyz .链式法则如图示链式法则如图示zuvxy xz uzxu vz,xv yz uzyu vz.yv 称为标准法则或称为标准法则或 法法则则22 这个公式的特征:这个

6、公式的特征:函数函数),(),(yxvyxufz 有两个自变量有两个自变量 x 和和 y故法则中包含故法则中包含yzxz ,两个公式;两个公式;由于在复合过程中有两个中间变量由于在复合过程中有两个中间变量 u 和和 v故法则中每一个公式都是两项之和,这两故法则中每一个公式都是两项之和,这两项分别含有项分别含有 vzuz ,每一项的构成与一元复合函数的链导法则类似,每一项的构成与一元复合函数的链导法则类似,即即“函数对中间变量的导数乘以中间变量对函数对中间变量的导数乘以中间变量对自变量的导数自变量的导数”多元复合函数的求导法则简言之即:多元复合函数的求导法则简言之即:“分道相加,连线相乘分道相加

7、,连线相乘” ” 类类似似地地再再推推广广,设设),(yxu 、),(yxv 、),(yxww 都都在在点点),(yx具具有有对对x和和y的的偏偏导导数数,复复合合函函数数),(),(),(yxwyxyxfz 在在对对应应点点),(yx的的两两个个偏偏导导数数存存在在,且且可可用用下下列列公公式式计计算算 xwwzxvvzxuuzxz , ywwzyvvzyuuzyz . zwvuyx特殊地特殊地),(yxufz 其中其中),(yxu 即即,),(yxyxfz 令令, xv , yw , 1 xv, 0 xw, 0 yv. 1 yw,xfxuufxz .yfyuufyz 两者的区别两者的区别把

8、把复复合合函函数数,),(yxyxfz 中中的的y看看作作不不变变而而对对x的的偏偏导导数数 把把),(yxufz 中中的的u及及y看看作作不不变变而而对对x的的偏偏导导数数区别类似区别类似注注 此公式可以推广到任意多个中间变量和任此公式可以推广到任意多个中间变量和任意多个自变量的情形意多个自变量的情形如如),(21muuufz ),(21niixxxuu ), 2 , 1(mi 则则), 2 , 1( ,1njxuuzxzjimiij 从以上推广中我们可以得出:所有公式中从以上推广中我们可以得出:所有公式中两两乘积的项数等于中间变量的个数,而与自两两乘积的项数等于中间变量的个数,而与自变量的

9、个数无关变量的个数无关关于多元复合函数求偏导问题关于多元复合函数求偏导问题这是一项基本技能,要求熟练掌握,尤其是求二这是一项基本技能,要求熟练掌握,尤其是求二阶偏导数,既是重点又是难点。对求导公式不求阶偏导数,既是重点又是难点。对求导公式不求强记,而要切实做到彻底理解。注意以下几点将强记,而要切实做到彻底理解。注意以下几点将会有助于领会和理解公式,在解题时自如地运用会有助于领会和理解公式,在解题时自如地运用公式公式用图示法表示出函数的复合关系用图示法表示出函数的复合关系函数对某个自变量的偏导数的结构函数对某个自变量的偏导数的结构(项数及项的构成)(项数及项的构成) 的结构是求抽象的复合函的结构

10、是求抽象的复合函数的二阶偏导数的关键数的二阶偏导数的关键 ),(),(vufvufvu弄清弄清 ),(),(vufvufvu仍是复合函数仍是复合函数且复合结构与原来的且复合结构与原来的 f ( u , v ) 完全相同完全相同即仍是以即仍是以 u , v 为中间变量,以为中间变量,以 x , y 为自变量为自变量的复合函数的复合函数因此求它们关于因此求它们关于 x , y 的偏导数时必须使链式法则的偏导数时必须使链式法则),(vufuzu uvxyxvfxufvufxxvfxufvufxvvvuvuvuuu ),(),(在具体计算中最容易出错的地方是对在具体计算中最容易出错的地方是对 ),(

11、vufu再求偏导数这一步再求偏导数这一步 是与是与 f ( u , v ) 具具有相同结构的复合函数易被误认为仅是有相同结构的复合函数易被误认为仅是 u 的的函数,从而导致漏掉函数,从而导致漏掉),(vufu这这一一项项uvf原因就是不注意原因就是不注意 求抽象函数的偏导数时,一定要设中间变量求抽象函数的偏导数时,一定要设中间变量注意引用这些公式的条件注意引用这些公式的条件外层函数可微(偏导数连续)外层函数可微(偏导数连续) 内层函数可导内层函数可导 vuuvff ,的合并问题的合并问题视题设条件视题设条件例例 1 1 设设vezusin ,而,而xyu ,yxv , 求求 xz 和和yz .

12、解解 xz uzxu vzxv 1cossin veyveuu),cossin(vvyeu yz uzyu vzyv 1cossin vexveuu).cossin(vvxeu 例例 2 2 设设tuvzsin ,而而teu ,tvcos , 求求全全导导数数dtdz.解解tzdtdvvzdtduuzdtdz ttuvetcossin ttetettcossincos .cos)sin(costttet 例例3 设设),(),(),(),(),( ryyrxxyxvvyxuuvufw 均满足复合函数求偏导数的条件均满足复合函数求偏导数的条件 计算计算 wrw,(两重复合问题)(两重复合问题)解

13、解由链式法则由链式法则wuvxyrrvvwruuwrw ryyurxxuru ryyvrxxvrv 故故)()(ryyvrxxvvwryyurxxuuwrw 同理可得同理可得)()( yyvxxvvwyyuxxuuww 例例 4 4 设设),(xyzzyxfw ,f具具有有二二阶阶 连连续续偏偏导导数数,求求xw 和和zxw 2. . 解解令令, zyxu ;xyzv 记记,),(1uvuff ,),(212vuvuff 同理有同理有,2f ,11f .22f xwxvvfxuuf ;21fyzf zxw2)(21fyzfz ;221zfyzf yzf zf1zvvfzuuf 11;1211f

14、xyf zf2zvvfzuuf 22;2221fxyf 于是于是 zxw21211fxyf 2f y )(2221fxyfyz .)(22221211f yf zxyfzxyf 二、全微分形式不变性二、全微分形式不变性 设设函函数数),(vufz 具具有有连连续续偏偏导导数数,则则有有全全微微分分dvvzduuzdz ;当当),(yxu 、),(yxv 时时,有有dyyzdxxzdz .全微分形式不变形的实质全微分形式不变形的实质: 无论无论 是自变量是自变量 的函数或中间变量的函数或中间变量 的函数,它的全微分形式是一样的的函数,它的全微分形式是一样的.zvu、vu、dyyzdxxzdz d

15、xxvvzxuuz dyyvvzyuuz dyyudxxuuz dyyvdxxvvzduuz .dvvz 利用全微分形式不变性,在逐步作微分运算的利用全微分形式不变性,在逐步作微分运算的过程中,不论变量间的关系如何错综复杂,都可以过程中,不论变量间的关系如何错综复杂,都可以不加辨认和区分,而一律作为自变量来处理不加辨认和区分,而一律作为自变量来处理且作微分运算的结果对自变量的微分且作微分运算的结果对自变量的微分 ,dzdydx来说是线性的来说是线性的从而为解题带来很多方便,而且也不易出错从而为解题带来很多方便,而且也不易出错uxyzxtxzxzzfxyyfxfxu xtxxy xtyfxyfx

16、fxu 例例5 设设),(),(),(zxttxyzyxfu 各函数满足求导条件各函数满足求导条件求求xu 解一解一 变量间的关系如下图所示变量间的关系如下图所示这里变量间的关系比较混乱这里变量间的关系比较混乱用全微分来解用全微分来解由全微分定理由全微分定理dzzfdyyfdxxfdu dzzfdttdxxyfdxxf dzzfdzzdxxtdxxyfdxxf )( 注意到注意到 x , z 是独立自变量是独立自变量 解二解二由全微分定义由全微分定义xtyfxyfxfxu zfztyfzu 注注解法二在实际计算中显得十分灵便且不易出错解法二在实际计算中显得十分灵便且不易出错dxxtyfxyfx

17、fdu)( dzzfztyf)( 故故 三、小结三、小结1、链式法则、链式法则(分三种情况)(分三种情况)(特别要注意课中所讲的特殊情况)(特别要注意课中所讲的特殊情况)2、全微分形式不变性、全微分形式不变性(理解其实质)(理解其实质)思考题思考题设设),(xvufz ,而而)(xu ,)(xv , 则则xfdxdvvfdxduufdxdz , 试试问问dxdz与与xf 是是否否相相同同?为为什什么么? 思考题解答思考题解答不不相相同同.等等式式左左端端的的z是是作作为为一一个个自自变变量量x的的函函数数,而而等等式式右右端端最最后后一一项项f是是作作为为xvu,的的三三元元函函数数, 写写出

18、出来来为为 xxvuxdxduufdxdz),(.),(),(xvuxxvuxfdxdvvf 本节讨论 :1) 方程在什么条件下才能确定隐函数 .例如, 方程02Cyx当 C 0 时, 不能确定隐函数;2) 在方程能确定隐函数时, 研究其连续性、可微性 及求导方法问题 .机动 目录 上页 下页 返回 结束 一、一个方程所确定的隐函数及其导数一、一个方程所确定的隐函数及其导数定理定理1.1. 设函数),(00yxP),(yxF;0),(00yxF则方程00),(xyxF在点单值连续函数 y = f (x) , )(00 xfy 并有连续yxFFxydd(隐函数求导公式)定理证明从略,仅就求导公式

19、推导如下: 具有连续的偏导数;的某邻域内某邻域内可唯一确定一个在点的某一邻域内满足0),(00yxFy满足条件机动 目录 上页 下页 返回 结束 导数0)(,(xfxF两边对 x 求导0ddxyyFxFyxFFxydd0yF,0),()(所确定的隐函数为方程设yxFxfy在),(00yx的某邻域内则机动 目录 上页 下页 返回 结束 若F( x , y ) 的二阶偏导数也都连续,22ddxy2yxxyyxxFFFFF3222yxyyyxyxyxxFFFFFFFFyxFF)(yxFFy)(2yxyxyyyyxFFFFFFF二阶导数 :)(yxFFxxyxxydd则还有机动 目录 上页 下页 返回

20、 结束 例例1. 验证方程01sinyxeyx在点(0,0)某邻域可确定一个单值可导隐函数, )(xfy 0dd,0dd22xxyxxy解解: 令, 1sin),(yxeyyxFx,0)0 , 0(F, yeFxx连续 ,由 定理1 可知,1)0 , 0(yF0, )(xfy 导的隐函数 则xyFy cos在 x = 0 的某邻域内方程存在单值可且机动 目录 上页 下页 返回 结束 并求0ddxxy0 xFFyx 1xy cosyex0, 0yx机动 目录 上页 下页 返回 结束 0dd22xxy)cos(ddxyyexx2)cos( xy 3100yyx)(yex)(cosxy )(yex)

21、 1sin(yy1, 0, 0yyx0 xy30dd22xxy)(, 01sinxyyyxeyxyycos两边对 x 求导1两边再对 x 求导yyyy cos)(sin2令 x = 0 , 注意此时1,0yy0 yxyyexxey0 yx)0 , 0(cosxyyex导数的另一求法导数的另一求法 利用隐函数求导机动 目录 上页 下页 返回 结束 定理定理2 . 若函数 ),(000zyxP),(zyxFzyzxFFyzFFxz,的某邻域内具有连续偏导数连续偏导数 ,则方程0),(zyxF在点),(00yx并有连续偏导数, ),(000yxfz 定一个单值连续函数 z = f (x , y) ,

22、 定理证明从略, 仅就求导公式推导如下:满足0),(000zyxF0),(000zyxFz 在点满足:某一邻域内可唯一确机动 目录 上页 下页 返回 结束 0),(,(yxfyxF两边对 x 求偏导xFzxFFxzzyFFyz同样可得,0),(),(所确定的隐函数是方程设yxFyxfz则zFxz00),(000zFzyx的某邻域内在机动 目录 上页 下页 返回 结束 例例2. 设,04222zzyx解法解法1 利用隐函数求导0422xzxzzxzxz2 22zxxz222)( 2xz222xzz0422xz2)(1xz322)2()2(zxz.22xz求机动 目录 上页 下页 返回 结束 再对

23、 x 求导解法解法2 利用公式设zzyxzyxF4),(222则,2xFxzxFFxz两边对 x 求偏导)2(22zxxxz2)2()2(zxzxz322)2()2(zxz2zxzx242 zFz机动 目录 上页 下页 返回 结束 zxFFxz xz例例3. 设F( x , y)具有连续偏导数, 0),(zyzxF.dz求解法解法1 利用偏导数公式.是由方程设),(yxfz 0),(zyzxF yz212FyFxFz211FyFxFzyyzxxzzdddzF11 1F)(2zx 2F)(2zyzF12 确定的隐函数,)dd(2121yFxFFyFxz则)()(2221zyzxFF 已知方程机动

24、 目录 上页 下页 返回 结束 故对方程两边求微分: 1F)dd(d2121yFxFFyFxzz)dd(2zzxxzzzFyFxd221 zyFxFdd21解法解法2 微分法.0),(zyzxF)dd(2zzyyz)(dzx 2F0)(dzy 1F 2F0机动 目录 上页 下页 返回 结束 二、方程组所确定的隐函数组及其导数二、方程组所确定的隐函数组及其导数隐函数存在定理还可以推广到方程组的情形.0),(0),(vuyxGvuyxF),(),(yxvvyxuu由 F、G 的偏导数组成的行列式vuvuGGFFvuGFJ),(),(称为F、G 的雅可比雅可比( Jacobi )行列式.以两个方程确

25、定两个隐函数的情况为例 , 即雅可比 目录 上页 下页 返回 结束 定理定理3.3.,0),(0000vuyxF的某一邻域内具有连续偏设函数),(0000vuyxP),(, ),(vuyxGvuyxF则方程组0),(,0),(vuyxGvuyxF),(00yx在点的单值连续函数单值连续函数),(, ),(yxvvyxuu且有偏导数公式 : 在点的某一邻域内可唯一唯一确定一组满足条件满足:0),(),(PvuGFPJ;0),(0000vuyxG导数;, ),(000yxuu 机动 目录 上页 下页 返回 结束 ),(000yxvv ),(),(1vxGFJxu),(),(1vyGFJyu),()

26、,(1xuGFJxv),(),(1yuGFJyv定理证明略.仅推导偏导数公式如下:vvvuvuGFGGFF1vvvuvuGFGGFF1uuvuvuGFGGFF1uuvuvuGFGGFF1(P34-P35)机动 目录 上页 下页 返回 结束 xxGFyyGFxxGFyyGF0),(),(,(0),(),(,(yxvyxuyxGyxvyxuyxF,的线性方程组这是关于xvxu0),(0),(vuyxGvuyxF有隐函数组则两边对 x 求导得,),(),(yxvvyxuu设方程组,0vuvuGGFFJ在点P 的某邻域内xuxvxuxvxFuFvF0 xGuGvG0公式 目录 上页 下页 返回 结束

27、故得系数行列式同样可得),(),(1vyGFJyu机动 目录 上页 下页 返回 结束 ),(),(1vxGFJxu),(),(1xuGFJxv),(),(1yuGFJyv例例4. 设, 1,0vxuyvyux.,yvxvyuxu解解:xyyxJJxu122yxvxuyyu方程组两边对 x 求导,并移项得求vxvxxuyxvyu22yxvyuxvyuxJxv122yxuyvx练习练习: 求yvyu,uxvyxux022yx22yxvyuxyv机动 目录 上页 下页 返回 结束 答案答案:由题设故有例例5.5.设函数在点(u,v) 的某一),(, ),(vuyyvuxx0),(),(vuyx1)

28、证明函数组),(),(vuyyvuxx( x, y) 的某一邻域内. ),(, ),(yxvvyxuu2) 求),(, ),(yxvvyxuu解解: 1) 令0),(),(vuxxvuyxF0),(),(vuyyvuyxG对 x , y 的偏导数.在与点 (u, v) 对应的点邻域内有连续的偏导数,且 唯一确定一组单值、连续且具有连续偏导数的反函数机动 目录 上页 下页 返回 结束 ),(),(),(),(yxvyxuyyyxvyxuxx式两边对 x 求导, 得uy0 xvxu1xuxvuxvxvy机动 目录 上页 下页 返回 结束 则有),(),(vuGFJ,0),(),(vuyx由定理 3

29、 可知结论 1) 成立.2) 求反函数的偏导数. , 0J注意vyvxJ011xuxv,1vyJ uyJ 1011uyuxJ机动 目录 上页 下页 返回 结束 从方程组解得同理, 式两边对 y 求导, 可得,1vxJyuuxJyv1, 0J注意vyvxJ011xuxv,1vyJ uyJ 1011uyuxJ机动 目录 上页 下页 返回 结束 从方程组解得同理, 式两边对 y 求导, 可得,1vxJyuuxJyv1xuxv例例5的应用的应用: 计算极坐标变换sin,cosryrx的反变换的导数 .),(),(ryxJxrx同样有22yxyyr22yxxy所以由于vyJ 1uyJ 1cos1rrsin1rcossinsincosrrryJ1cos22yxxryJ 122yxyrr机动 目录 上页 下页 返回 结束 内容小结内容小结1. 隐函数( 组) 存在定理2. 隐函数 ( 组) 求导方法方法1. 利用复合函数求导法则直接计算 ;方法2. 利用微分形式不变性 ;方法3. 代公式思考与练习思考与练习设, ),(zyxzyxfz求.,yxzxxz机动 目录 上页 下页 返回 结束 zx 提示提示:),(zyxzyxfzxz1f xz 12f xzyxzyxz21fzyf211fyxf 11f 1zx2f yxzxzy 211fyxf21fzyfyx 01f 1yx2f zxyx

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论