(全国通用)高考数学大一轮复习 第十一章 推理与证明、算法、复数 第2节 直接证明与间接证明学案 文 新人教A_第1页
(全国通用)高考数学大一轮复习 第十一章 推理与证明、算法、复数 第2节 直接证明与间接证明学案 文 新人教A_第2页
(全国通用)高考数学大一轮复习 第十一章 推理与证明、算法、复数 第2节 直接证明与间接证明学案 文 新人教A_第3页
(全国通用)高考数学大一轮复习 第十一章 推理与证明、算法、复数 第2节 直接证明与间接证明学案 文 新人教A_第4页
(全国通用)高考数学大一轮复习 第十一章 推理与证明、算法、复数 第2节 直接证明与间接证明学案 文 新人教A_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1第第 2 2 节节直接证明与间接证明直接证明与间接证明最新考纲1.了解直接证明的两种基本方法分析法和综合法; 了解分析法和综合法的思考过程和特点; 2.了解间接证明的一种基本方法反证法; 了解反证法的思考过程和特点.知 识 梳 理1.直接证明内容综合法分析法定义利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立从要证明的结论出发,逐步寻求使它成立的充分条件,直到最后把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止实质由因导果执果索因框图表示PQ1Q1Q2QnQQP1P1P2得到一个明显成立的条件文字语言因为所以或由得要证

2、只需证即证2.间接证明间接证明是不同于直接证明的又一类证明方法,反证法是一种常用的间接证明方法.(1)反证法的定义:假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立的证明方法.(2)用反证法证明的一般步骤:反设假设命题的结论不成立;归谬根据假设进行推理,直到推出矛盾为止;结论断言假设不成立,从而肯定原命题的结论成立.诊 断 自 测1.思考辨析(在括号内打“”或“”)(1)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.()2(2)用反证法证明结论“ab”时,应假设“ab”.()(3)反证法是指将结论和条件同时否定

3、,推出矛盾.()(4)在解决问题时,常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程.()解析(1)分析法是从要证明的结论出发,逐步寻找使结论成立的充分条件.(2)应假设“ab”.(3)反证法只否定结论.答案(1)(2)(3)(4)2.若a,b,c为实数,且ab0,则下列命题正确的是()A.ac2abb2C.1aab解析a2aba(ab),ab0,ab0,a2ab.又abb2b(ab)0,abb2,由得a2abb2.答案B3.要证a2b21a2b20,只要证明()A.2ab1a2b20B.a2b21a4b420C.(ab)221a2b20D.(a21)(b21)0解析a2b21a2

4、b20(a21)(b21)0.答案D4.用反证法证明:若整系数一元二次方程ax2bxc0(a0)有有理数根,那么a,b,c中至少有一个是偶数.用反证法证明时,下列假设正确的是()A.假设a,b,c都是偶数B.假设a,b,c都不是偶数C.假设a,b,c至多有一个偶数D.假设a,b,c至多有两个偶数解析“至少有一个”的否定为“都不是”,故 B 正确.3答案B5.(选修 12P37 例 3 改编)在ABC中,三个内角A,B,C的对边分别为a,b,c,且A,B,C成等差数列,a,b,c成等比数列,则ABC的形状为_.解析由题意 2BAC,又ABC,B3,又b2ac,由余弦定理得b2a2c22accos

5、Ba2c2ac,a2c22ac0,即(ac)20,ac,AC,ABC3,ABC为等边三角形.答案等边三角形考点一综合法的应用【例 1】 数列an满足an1an2an1,a11.(1)证明:数列1an是等差数列;(2)(一题多解)求数列1an的前n项和Sn,并证明1S11S21Snnn1.(1)证明an1an2an1,1an12an1an,化简得1an121an,即1an11an2,故数列1an是以 1 为首项,2 为公差的等差数列.(2)解由(1)知1an2n1,Snn(12n1)2n2.法一1S11S21Sn1121221n21121231n(n1)112 1213 1n1n1 11n1nn

6、1.法二1S11S21Sn1121221n21,又1nn1,1S11S21Snnn1.规律方法1.综合法是“由因导果”的证明方法,它是一种从已知到未知(从题设到结论)4的逻辑推理方法, 即从题设中的已知条件或已证的真实判断(命题)出发, 经过一系列中间推理,最后导出所要求证结论的真实性.2.综合法的逻辑依据是三段论式的演绎推理.【训练 1】 (2018东北三省三校调研)已知a,b,c0,abc1.求证:(1)abc 3;(2)13a113b113c132.证明(1)(abc)2(abc)2ab2bc2ca(abc)(ab)(bc)(ca)3,abc 3.(2)a0,3a10,43a1(3a1)

7、243a1(3a1)4,当且仅当43a13a1,即a13时取“”.43a133a,同理得43b133b,43c133c,以上三式相加得413a113b113c1 93(abc)6,13a113b113c132,当且仅当abc13时取“”.考点二分析法的应用【例 2】 已知ab0,求证:2a3b32ab2a2b.证明要证明 2a3b32ab2a2b成立,只需证 2a3b32ab2a2b0,即 2a(a2b2)b(a2b2)0,即(ab)(ab)(2ab)0.ab0,ab0,ab0,2ab0,从而(ab)(ab)(2ab)0 成立,2a3b32ab2a2b.规律方法1.逆向思考是用分析法证题的主要

8、思想, 通过反推, 逐步寻找使结论成立的充分5条件.正确把握转化方向是使问题顺利获解的关键.2.证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个与结论等价(或充分)的中间结论,然后通过综合法证明这个中间结论,从而使原命题得证.【训练 2】 ABC的三个内角A,B,C成等差数列,A,B,C的对边分别为a,b,c.求证:1ab1bc3abc.证明要证1ab1bc3abc,即证abcababcbc3 也就是cababc1,只需证c(bc)a(ab)(ab)(bc),需证c2a2acb2,又ABC三内角A,B,C成等差数列,故B60,由余弦定理,得b2c2a22accos 60,即b2c

9、2a2ac,故c2a2acb2成立.于是原等式成立.考点三反证法的应用【例 3】 等差数列an的前n项和为Sn,a11 2,S393 2.(1)求数列an的通项an与前n项和Sn;(2)设bnSnn(nN N* *),求证:数列bn中任意不同的三项都不可能成为等比数列.(1)解由已知得a1 21,3a13d93 2,解得d2,故an2n1 2,Snn(n 2).(2)证明由(1)得bnSnnn 2.假设数列bn中存在三项bp,bq,br(p,q,rN N*,且互不相等)成等比数列,则b2qbpbr.即(q 2)2(p 2)(r 2).(q2pr) 2(2qpr)0.p,q,rN N* *,q2

10、pr0,2qpr0.pr22q2pr,(pr)20.pr,与pr矛盾.数列bn中任意不同的三项都不可能成为等比数列.规律方法1.当一个命题的结论是以“至多”、“至少”、“唯一”或以否定形式出现时,6可用反证法来证,反证法关键是在正确的推理下得出矛盾,矛盾可以是与已知条件矛盾,与假设矛盾,与定义、公理、定理矛盾,与事实矛盾等.2.用反证法证明不等式要把握三点:(1)必须否定结论;(2)必须从否定结论进行推理;(3)推导出的矛盾必须是明显的.【训练 3】 (2018郑州一中月考)已知a1a2a3a4100,求证:a1,a2,a3,a4中至少有一个数大于 25.证明假设a1,a2,a3,a4均不大于

11、 25,即a125,a225,a325,a425,则a1a2a3a425252525100,这与已知a1a2a3a4100 矛盾,故假设错误.所以a1,a2,a3,a4中至少有一个数大于 25.基础巩固题组(建议用时:40 分钟)一、选择题1.用反证法证明命题:“三角形三个内角至少有一个不大于 60”时,应假设()A.三个内角都不大于 60B.三个内角都大于 60C.三个内角至多有一个大于 60D.三个内角至多有两个大于 60解析“至少有一个”的否定是“一个都没有”,故可以理解为都大于 60.答案B2.已知m1,am1m,bmm1,则以下结论正确的是()A.abB.amm10(m1),1m1m

12、1mm1,即a0B.a2b22(ab1)C.a23ab2b2D.aba1b1解析在 B 中,a2b22(ab1)(a22a1)(b22b1)(a1)2(b1)20,a2b22(ab1)恒成立.答案B4.分析法又称“执果索因法”, 若用分析法证明: “设abc, 且abc0, 求证b2ac 3a”索的因应是()A.ab0B.ac0C.(ab)(ac)0D.(ab)(ac)0解析由题意知b2ac 3ab2ac3a2 (ac)2ac3a2a22acc2ac3a20 2a2acc20 2a2acc20 (ac)(2ac)0 (ac)(ab)0.答案C5.已知p3q32,求证pq2,用反证法证明时,可假

13、设pq2;已知a,bR R,|a|b|40, 6 72 2 5.答案6 72 2 57.用反证法证明命题“a,bR R,ab可以被 5 整除,那么a,b中至少有一个能被 5 整除”,那么假设的内容是_.解析“至少有一个能被 5 整除”的否定是“都不能被 5 整除”.答案“a,b都不能被 5 整除”8.下列条件:ab0,ab0,b0,a0,b0 成立,即a,b不为 0 且同号即可,故能使baab2 成立.答案三、解答题9.若a,b,c是不全相等的正数,求证:lgab2lgbc2lgca2lgalgblgc.证明a,b,c(0,),ab2ab0,bc2bc0,ac2ac0.又上述三个不等式中等号不

14、能同时成立.ab2bc2ca2abc成立.上式两边同时取常用对数,得 lgab2bc2ca2lgabc,lgab2lgbc2lgca2lgalgblgc.10.设数列an是公比为q的等比数列,Sn是它的前n项和.(1)求证:数列Sn不是等比数列;(2)数列Sn是等差数列吗?为什么?(1)证明假设数列Sn是等比数列,则S22S1S3,9即a21(1q)2a1a1(1qq2),因为a10,所以(1q)21qq2,即q0,这与公比q0 矛盾,所以数列Sn不是等比数列.(2)解当q1 时,Snna1,故Sn是等差数列;当q1 时,Sn不是等差数列,否则 2S2S1S3,即 2a1(1q)a1a1(1q

15、q2),得q0,这与公比q0 矛盾.综上,当q1 时,数列Sn是等差数列;当q1 时,数列Sn不是等差数列.能力提升题组(建议用时:20 分钟)11.(2018上饶开学考试)设x,y,z0,则三个数yxyz,zxzy,xzxy()A.都大于 2B.至少有一个大于 2C.至少有一个不小于 2D.至少有一个不大于 2解析因为yxyzzxzyxzxyyxxyyzzyzxxz6,当且仅当xyz时等号成立.所以三个数中至少有一个不小于 2,故选 C.答案C12.(2016全国卷)有三张卡片,分别写有 1 和 2,1 和 3,2 和 3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是 2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是 1”,丙说:“我的卡片上的数字之和不是 5”,则甲的卡片上的数字是_.解析根据丙的说法及乙看了丙的卡片后的说法进行推理.由丙说“我的卡片上的数字之和不是 5”, 可推知丙的卡片上的数字是 1 和 2 或 1 和 3.又根据乙看了丙的卡片后说: “我与丙的卡片上相同的数字不是 1”可知,乙的卡片不含 1,所以乙的卡片上的数字为 2 和 3.再根据甲的说法“我与乙的卡片上相同

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论