圆与圆位置关系教学案例分析_第1页
圆与圆位置关系教学案例分析_第2页
圆与圆位置关系教学案例分析_第3页
圆与圆位置关系教学案例分析_第4页
圆与圆位置关系教学案例分析_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、圆与圆的位置关系教学案例一、设计意图圆与圆的位置关系是在学习了圆的有关知识圆的基本概念、点与圆的位置关系、直线与圆的位置关系之后的一节新课, 这节课的内容与“直线与圆的位置关系”有着密切的联系,但又比直线与圆的位置关系复杂。因此,我采用了“观察操作类比猜想讨论归纳”的教学模式,让学生观察日常生活中的自然现象,从学生实际出发,创设有助于学生自主学习的问题情境,通过观察“日环食”过程,类比直线与圆的位置关系,猜测两圆可能存在的位置关系,然后进行讨论、归纳确定两圆位置关系的各种情况。在这一环节中,尽量让学生做到动脑、动口、动手,而且分类时循序渐进,层层深入。在探究出两圆的位置关系之后,再次回到日环食

2、现象中,体会自然现象中的数学知识,这就体现了数学来源于生活又运用于生活。在与两圆位置关系相应的三量的数量关系的研究中运用类比迁移的方法,采用“先易后难,突破关键”的教学策略,先解决“外离,外切,内切”,再解决“内含”,最后突破“相交”时三个量的数量关系。力求在探究新知过程中,充分发挥学生的主体地位。习题的配备注重典型,由易到难,意在再次渗透分类讨论的数学思想,培养学生思考问题全面、严密的能力。二、教学目标知识目标: 理解圆与圆的五种位置关系及其判定,并能初步运用这些知识解决有关问题。能力目标:经历探索两个圆之间位置关系的过程,训练学生的探索能力;通过平移实验直观地探索圆和圆的位置关系,发展学生

3、的识图能力和动手操作能力情感与价值观目标: 通过探索圆和圆的位置关系,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性;经历探究图形的位置关系,丰富对现实空间及图形的认识,发展形象思维1 / 7三、教学重点 圆与圆的位置关系及其判定,并能初步运用这些知识解决相关问题。四、教学难点 相交两圆位置关系与相应三量的数量关系的推出。五、教学过程(一)创 设 情 境问题1:你见过“日环食”吗?你知道这种现象是怎么产生的吗?多媒体展现“日环食”全过程,并配以这种现象成因的解说问题2:观看了“日环食” 过程,你们是否注意到其中的数学问题?将图片中的太阳与月亮的轮廓抽象为大小不同的两个圆,将

4、图片中的太阳与月亮的轮廓的位置关系抽象为大小不同的两个圆的位置关系,“日环食”的过程揭示了圆与圆的位置关系。【设计意图】用学生观看“日环食”导入,既体现了与地理学科的整合,又能激发学生的兴趣。通过关注这一自然现象中所蕴涵的数学问题,让学生自主建立大小不同的两个圆的各种位置关系的直观模型,使学生经历知识的发生发展过程,加深学生对将要学习的知识的印象和记忆。(二)探索活动问题3:圆与圆的位置关系可以分为哪几类?请同学们在纸上画出。你的分类标准是什么?【设计意图】让学生发挥想象,在纸上画两圆位置关系。丰富学生对现实空间及图形的认识,建立空间观念,发展形象思维。同时也是对学生想象力的一种发散。学生会将

5、直线与圆的位置关系迁移到圆与圆的位置关系上,从而将两圆位置关系分成三大类(1)相离:两个圆没有公共点,那么这两个圆相离(2)相切:如果两个圆只有一个公共点,那么这两个圆相切(3)相交:如果两个圆有两个公共点,那么这两个圆相交问题4:观察相离与相切两种情况,能否继续分类?学生讨论后得出:相离又可分两种,相切也可分两种 至此,学生将圆与圆的五种位置关系全部探索出,并明确两圆位置关系由两个因素确定:(1) 公共点个数(2) 一个圆上的点是在另一个圆的内部还是外部老师给出各种位置的图形、名称、定义【设计意图】通过层层深入进行探究,符合学生的认知水平。同时渗透分类化归的数学思想,培养学生思维的

6、全面性、严密性再次观看“日环食” 过程,说出“日环食”过程中依次出现的各种位置关系问题5:你能找出生活中能体现两个圆不同位置关系的实例么? 【设计意图】回到引入问题,回归生活。既检测了学生对所学内容掌握情况,又让学生体会数学来源于生活,生活中处处有数学。培养学生的应用意识和善于从生活中发现数学问题的能力。 问题6:两圆的五种位置关系与哪些量有关系?(位置关系与两圆半径及两圆圆心之间的距离,即圆心距有关)介绍连心线和圆心距的概念。 问题7:每一种位置关系分别与这三量的数量关系有着怎样的联系呢?(设R>r )先观察两圆外离、外切、内切、内含,学生很快得出d与R、

7、r的数量关系然后小组讨论交流两圆相交时d与R、r的数量关系学生讨论得出:两圆相交是介于两圆外切和两圆内切的一种位置关系,所以R- r<d< R+r老师指出另一种方法:连接两圆的圆心和一个交点,构造三角形,利用两边之和大于第三边得出结论。.师生归纳两圆位置关系的量化判断:两圆外离 d>R+r两圆外切 d= R+r两圆内切 d= R- r两圆内含 0d< R- r两圆相交 R- r<d< R+r 最后老师引导学生将两圆位置关系的量化判断与数轴结合起来,帮助学生记忆,并且使所学知识科学化,系统化。【设计意图】在解决两圆位置关系的量化判断的研究中运用类比迁

8、移的方法,采用“先易后难,突破关键”的教学策略,先解决“外离,外切,内切”,再解决“内含”,最后突破“相交”时三个量的数量关系。这一难点的突破,力求发挥合作学习的优越性,通过小组交流,让学生自主参与,经历知识的发生发展过程。 最后引导学生将两圆位置关系与数轴结合起来,达到了高度概括。这样既使所学知识科学化,系统化,又培养了学生的归纳概括能力。(三)、练习巩固1、O1和O2的半径分别为3cm和4cm,设:(1)O1O2=8cm (2)O1O2=7cm (3)O1O2=5cm (4)O1O2=1cm (5)O1O2=0.5cm (6)O1和 O2重合O1和O2的位置关系怎样? 2、O1的

9、O2的半径分别为2cm和5cm,在下列情况下,分别求出两圆的圆心距d的取值范围: (1)外离 (2)外切 (3)相交 (4)内切 (5)内含3、判断正误(1)、若两圆只有一个交点,则这两圆外切. ( )(2)如果两圆没有交点,则这两圆的位置关系是外离.( )(3)、当O1O2=0时,两圆位置关系是同心圆.( )(4)若O1O2=1.5,r=1,R=3则O1O2<R+r所以两圆相交( )(5)、若O1O2=4,且r =7,R=3,则O1O2<Rr,所以两圆内含.( )【设计意图】由两圆的半径和圆心距判断出位置关系,由两圆的半径和位置关系求出圆心距d的取值范围。通过量与量之间的相互转化

10、的判断,促进学生对所学知识理解,同时为学生灵活应用所学内容做下了铺垫。(四)、例题讲解 1、如图,O的半径为5cm,点P是O外一点, OP=8cm.(1)以P为圆心作P与O外切,小圆P的半径是多少?(2)以P为圆心作P与O内切,则P的半径是多少?(3)以P为圆心作P与O相切,则P的半径是多少?2、如图, O的半径为5cm,点P是O内一点, OP=2cm. P与O内切,则P的半径是多少?【设计意图】通过一题多问,一题多变,一题多解,促进学生更好地掌握所学知识,灵活应用所学知识,并且培养了学生思维的广阔性和严密性。(五)、能 力 拓 展  定圆O的半径为4cm,动圆P的半径为1cm(1)

11、设O与P相外切,那么点O与点P的距离是多少?点P可以在什么线上运动?(2)设O与P相内切,那么点O与点P的距离是多少?点P可以在什么线上运动?【设计意图】学生根据题意自己画图,画完图后解答问题,然后老师利用动画验证。从而培养学生分析问题,解决问题及空间想象能力。六、教学反思1、本节课主要实现三个目标:(1)让学生体验生活中的数学知识,激发学生的学习热情。在教学过程中,以实际生活中的问题为载体,在教师的帮助下,引导学生分析、研究问题,通过实际背景揭示数学本质,让学生参与教学过程,体验数学在解决实际问题中的作用、数学与日常生活及其他学科的联系,激发了学生的学习热情,起到了预期的效果。(2)通过学生的观察、猜想、操作、总结归纳探究出圆与圆的五种位置关系及判定方法。学生经历了圆与圆的位置关系的探索过程,进一步领会类比、分类、化归、数形结合等数学思想。在自主探索、动手实践、合作交流等学习过程中获得知识、增强技能。(3)使学生逐步体会探究新知的方法,培养

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论