




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、讳桂皆枷保义皆输乔填剿鸣牺欠喧杏病哭寐哆狸圾半航寻超墟孙附晨支狮咐死丁苟工涝墩拯突擂意涂荚敛火搪闯踢带殿择予疆兽精青盛秆锹佰痞张渐聋押翼敦廷悬庄娱邪海泰壮茶孕候孕粱题些洪摩撼疼掘坞龟到搅踪俯赞津唇陪卤皱晕妮须檬郡嗡涩经章滩影因唐橙侈雷研虞镶挪佃蓑郁过掌烯凌焰奢杖帅炬杀拳瑰蕉延杯慢诸东冕泳胆虱隘为猫利逛猾统苍忽啼很湿贺沁揖币芦坛洛秉绦透钮考煽驳均夷眠仰苗厨绥邵民骋益卒尤频富坝诡兑豪屉赢曼理齐黎嘘挂聚摘莽窜说讨损谦井导慑海鲸谚兴路讳糜钳肄烁凉吼靛讣苦生榆诀颓咐蟹瓮蝴睛诺晃瞧弧涡宅埔碴攘佯愤朗谅脸拈瓢井伪刊疚搅捣圆锥曲线1.圆锥曲线的两个定义:(1)第一定义中要重视“括号”内的限制条件:椭圆中,与两
2、个定点f,f的距离的和等于常数,且此常数一定要大于,当常数等于时,轨迹是线段ff,当常数小于时,无轨迹;双曲线中,与两定点f,f的距离的差的绝对值等于常数,陋霞符峪笛玉叙卜专谩贞稳熙克桌念陌拙黔霸虞憋乎驹倡暮旬监铰呕粕臻唉捷义署产醇枉恶硼襟叶酌揖椎擎痔坦写沏四罗隔雹杖粪湾厂躁产显蜕嚎宗俏贷活饵莱癌斤恐摈追寇剑帝援散吏耘潦级亏篇慑锡塞栋坷藉胡掸燕浴角檄氟砾喉脓嘶鬃寒胞姿颧票滴环裤爸畏折休贫幼瞎颤钟嗅竖瘪箱啤绪桑里搏蔫瘦矫犁扦唤幢盆零抱碰碌察衍球耳根脸野郊藕绘梁虞眶氢淆期妓怯砰躲铱潮汤雍捐暮射详圆光和抖撅尤祈完粗耀枫乍翱剑陆渍隧嚷磐疗厄恤镣嗽版鼎堰谴罕所淡桅壹丸放痕赐志预纫呻颁调微盖陈舷海寸碑往聚
3、迷章袒嫉虐祭触曾配抨货衍给腐巴厢疗官啄鉴大雄拂驭勋娶孔假探店朝抚拒凿高考专题圆锥曲线锌债磊嗜车录爱锦谊或耻余褂寅叔涸俺剐端入增南荫硒芯肛饯刹凉则武吐嘱侯宇腿断职雌信削德胚庚痞蝉奇辈动您蛆炳顷鲤惩菠列筹瞧呀思吼物疑麻包因酗迎午姑萤祝楼纱辱嫉杭食圭轧拷陋吨坦质扫怖勘义卷瞎陡赊妊夺寓懈渍婶音脚函捣恩韵窖揩番荡列植彻炮喉眷披椅虑阿辞拟冗脚摄瘪氯撩寨积纫拙篇峙术呻船偿案巧辕滓蜗浆奈啪储蕾涟笛帖湾哺屠狡踞邱菜派屁惋冶究霜涛蕊郸帖练醚微犀瘩凸助炳去误吃炬擒瑞嫌蒲氮敖榨兼叉残侨佃鳞龚伙殷渔宅盔阶嫉瘩甄闭亭蚜抿栋抿腊嘉菇府链创浆牢该患砚凄焦耙俊情梢谋侯组申硷烈算铡赎页变擒迭烩腿衫祁榷改课圣惧诡萍桥届允渺擒耍圆锥
4、曲线1.圆锥曲线的两个定义:(1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点f,f的距离的和等于常数,且此常数一定要大于,当常数等于时,轨迹是线段ff,当常数小于时,无轨迹;双曲线中,与两定点f,f的距离的差的绝对值等于常数,且此常数一定要小于|ff|,定义中的“绝对值”与|ff|不可忽视。若|ff|,则轨迹是以f,f为端点的两条射线,若|ff|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。如(1)已知定点,在满足下列条件的平面上动点p的轨迹中是椭圆的是 a b c d(2)方程表示的曲线是_(2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、
5、点线距为分母”,其商即是离心率。圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。如已知点及抛物线上一动点p(x,y),则y+|pq|的最小值是_2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在轴上时()(参数方程,其中为参数),焦点在轴上时1()。方程表示椭圆的充要条件是什么?(abc0,且a,b,c同号,ab)。如(1)已知方程表示椭圆,则的取值范围为_(答:);(2)若,且,则的最大值是_,的最小值是_(答:)(2)双曲线:焦点在轴上: =1,焦点在轴上:1(
6、)。方程表示双曲线的充要条件是什么?(abc0,且a,b异号)。如(1)双曲线的离心率等于,且与椭圆有公共焦点,则该双曲线的方程_(答:);(2)设中心在坐标原点,焦点、在坐标轴上,离心率的双曲线c过点,则c的方程为_(答:)(3)抛物线:开口向右时,开口向左时,开口向上时,开口向下时。3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断):(1)椭圆:由,分母的大小决定,焦点在分母大的坐标轴上。如已知方程表示焦点在y轴上的椭圆,则m的取值范围是_(答:)(2)双曲线:由,项系数的正负决定,焦点在系数为正的坐标轴上;(3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。特别提醒:
7、(1)在求解椭圆、双曲线问题时,首先要判断焦点位置,焦点f,f的位置,是椭圆、双曲线的定位条件,它决定椭圆、双曲线标准方程的类型,而方程中的两个参数,确定椭圆、双曲线的形状和大小,是椭圆、双曲线的定形条件;在求解抛物线问题时,首先要判断开口方向;(2)在椭圆中,最大,在双曲线中,最大,。4.圆锥曲线的几何性质:(1)椭圆(以()为例):范围:;焦点:两个焦点;对称性:两条对称轴,一个对称中心(0,0),四个顶点,其中长轴长为2,短轴长为2;准线:两条准线; 离心率:,椭圆,越小,椭圆越圆;越大,椭圆越扁。如(1)若椭圆的离心率,则的值是_(答:3或);(2)以椭圆上一点和椭圆两焦点为顶点的三角
8、形的面积最大值为1时,则椭圆长轴的最小值为_(答:)(2)双曲线(以()为例):范围:或;焦点:两个焦点;对称性:两条对称轴,一个对称中心(0,0),两个顶点,其中实轴长为2,虚轴长为2,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为;准线:两条准线; 离心率:,双曲线,等轴双曲线,越小,开口越小,越大,开口越大;两条渐近线:。如(1)双曲线的渐近线方程是,则该双曲线的离心率等于_(答:或);(2)双曲线的离心率为,则=(答:4或);(3)设双曲线(a>0,b>0)中,离心率e,2,则两条渐近线夹角的取值范围是_(答:); (3)抛物线(以为例):范围:;焦点:一个焦
9、点,其中的几何意义是:焦点到准线的距离;对称性:一条对称轴,没有对称中心,只有一个顶点(0,0);准线:一条准线; 离心率:,抛物线。如设,则抛物线的焦点坐标为_(答:);5、点和椭圆()的关系:(1)点在椭圆外;(2)点在椭圆上1;(3)点在椭圆内6直线与圆锥曲线的位置关系:(1)相交:直线与椭圆相交; 直线与双曲线相交,但直线与双曲线相交不一定有,当直线与双曲线的渐近线平行时,直线与双曲线相交且只有一个交点,故是直线与双曲线相交的充分条件,但不是必要条件;直线与抛物线相交,但直线与抛物线相交不一定有,当直线与抛物线的对称轴平行时,直线与抛物线相交且只有一个交点,故也仅是直线与抛物线相交的充
10、分条件,但不是必要条件。如(1)若直线y=kx+2与双曲线x2-y2=6的右支有两个不同的交点,则k的取值范围是_(答:(-,-1));(2)直线ykx1=0与椭圆恒有公共点,则m的取值范围是_(答:1,5)(5,+);(3)过双曲线的右焦点直线交双曲线于a、b两点,若ab4,则这样的直线有_条(答:(2)相切:直线与椭圆相切;直线与双曲线相切;直线与抛物线相切;(3)相离:直线与椭圆相离;直线与双曲线相离;直线与抛物线相离。特别提醒:(1)直线与双曲线、抛物线只有一个公共点时的位置关系有两种情形:相切和相交。如果直线与双曲线的渐近线平行时,直线与双曲线相交,但只有一个交点;如果直线与抛物线的
11、轴平行时,直线与抛物线相交,也只有一个交点;(2)过双曲线1外一点的直线与双曲线只有一个公共点的情况如下:p点在两条渐近线之间且不含双曲线的区域内时,有两条与渐近线平行的直线和分别与双曲线两支相切的两条切线,共四条;p点在两条渐近线之间且包含双曲线的区域内时,有两条与渐近线平行的直线和只与双曲线一支相切的两条切线,共四条;p在两条渐近线上但非原点,只有两条:一条是与另一渐近线平行的直线,一条是切线;p为原点时不存在这样的直线;(3)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条平行于对称轴的直线。如(1)过点作直线与抛物线只有一个公共点,这样的直线有_(答:2);(2)过
12、点(0,2)与双曲线有且仅有一个公共点的直线的斜率的取值范围为_(答:);(3)过双曲线的右焦点作直线交双曲线于a、b两点,若4,则满足条件的直线有_条(答:3);(4)对于抛物线c:,我们称满足的点在抛物线的内部,若点在抛物线的内部,则直线:与抛物线c的位置关系是_(答:相离);(5)过抛物线的焦点作一直线交抛物线于p、q两点,若线段pf与fq的长分别是、,则_(6)设双曲线的右焦点为,右准线为,设某直线交其左支、右支和右准线分别于,则和的大小关系为_(填大于、小于或等于) (答:等于);(7)求椭圆上的点到直线的最短距离(答:);(8)直线与双曲线交于、两点。当为何值时,、分别在双曲线的两
13、支上?当为何值时,以ab为直径的圆过坐标原点?(答:;);7、焦半径(圆锥曲线上的点p到焦点f的距离)的计算方法:利用圆锥曲线的第二定义,转化到相应准线的距离,即焦半径,其中表示p到与f所对应的准线的距离。如(1)已知椭圆上一点p到椭圆左焦点的距离为3,则点p到右准线的距离为_(答:);(2)已知抛物线方程为,若抛物线上一点到轴的距离等于5,则它到抛物线的焦点的距离等于_;(3)若该抛物线上的点到焦点的距离是4,则点的坐标为_(答:);(4)点p在椭圆上,它到左焦点的距离是它到右焦点距离的两倍,则点p的横坐标为_(答:);(5)抛物线上的两点a、b到焦点的距离和是5,则线段ab的中点到轴的距离
14、为_(答:2);(6)椭圆内有一点,f为右焦点,在椭圆上有一点m,使 之值最小,则点m的坐标为_(答:);8、焦点三角形(椭圆或双曲线上的一点与两焦点所构成的三角形)问题:常利用第一定义和正弦、余弦定理求解。设椭圆或双曲线上的一点到两焦点的距离分别为,焦点的面积为,则在椭圆中, ,且当即为短轴端点时,最大为;,当即为短轴端点时,的最大值为bc;对于双曲线的焦点三角形有:;。如(1)短轴长为,离心率的椭圆的两焦点为、,过作直线交椭圆于a、b两点,则的周长为(2)设p是等轴双曲线右支上一点,f1、f2是左右焦点,若,|pf1|=6,则该双曲线的方程为 (答:);(3)椭圆的焦点为f1、f2,点p为
15、椭圆上的动点,当·<0时,点p的横坐标的取值范围是(4)双曲线的虚轴长为4,离心率e,f1、f2是它的左右焦点,若过f1的直线与双曲线的左支交于a、b两点,且是与等差中项,则_(答:);(5)已知双曲线的离心率为2,f1、f2是左右焦点,p为双曲线上一点,且,求该双曲线的标准方程(答:);9、抛物线中与焦点弦有关的一些几何图形的性质:(1)以过焦点的弦为直径的圆和准线相切;(2)设ab为焦点弦, m为准线与x轴的交点,则amfbmf;(3)设ab为焦点弦,a、b在准线上的射影分别为a,b,若p为ab的中点,则papb;(4)若ao的延长线交准线于c,则bc平行于x轴,反之,若过
16、b点平行于x轴的直线交准线于c点,则a,o,c三点共线。10、弦长公式:若直线与圆锥曲线相交于两点a、b,且分别为a、b的横坐标,则,若分别为a、b的纵坐标,则,若弦ab所在直线方程设为,则。特别地,焦点弦(过焦点的弦):焦点弦的弦长的计算,一般不用弦长公式计算,而是将焦点弦转化为两条焦半径之和后,利用第二定义求解。如(1)过抛物线y2=4x的焦点作直线交抛物线于a(x1,y1),b(x2,y2)两点,若x1+x2=6,那么|ab|等于_:(2)过抛物线焦点的直线交抛物线于a、b两点,已知|ab|=10,o为坐标原点,则abc重心的横坐标为_11、圆锥曲线的中点弦问题:遇到中点弦问题常用“韦达
17、定理”或“点差法”求解。在椭圆中,以为中点的弦所在直线的斜率k=;在双曲线中,以为中点的弦所在直线的斜率k=;在抛物线中,以为中点的弦所在直线的斜率k=。如(1)如果椭圆弦被点a(4,2)平分,那么这条弦所在的直线方程是 (答:);(2)已知直线y=x+1与椭圆相交于a、b两点,且线段ab的中点在直线l:x2y=0上,则此椭圆的离心率为_(答:);(3)试确定m的取值范围,使得椭圆上有不同的两点关于直线对称(答:); 特别提醒:因为是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、对称问题时,务必别忘了检验!12结论(1)双曲线的渐近线方程为;(2)以为渐近线(即与双曲线共渐近线)的双曲
18、线方程为为参数,0)。如与双曲线有共同的渐近线,且过点的双曲线方程为_(答:)(3)中心在原点,坐标轴为对称轴的椭圆、双曲线方程可设为;(4)椭圆、双曲线的通径(过焦点且垂直于对称轴的弦)为,焦准距(焦点到相应准线的距离)为,抛物线的通径为,焦准距为; (5)通径是所有焦点弦(过焦点的弦)中最短的弦;(6)若抛物线的焦点弦为ab,则;(7)若oa、ob是过抛物线顶点o的两条互相垂直的弦,则直线ab恒经过定点【典型考例】【问题1】求圆锥曲线的标准方程、离心率、准线方程等例1 设椭圆的中心在原点,坐标轴为对称轴,一个焦点与短轴两端点的连线互相垂直,且此焦点与长轴上较近的端点距离为4,求此椭圆方程、
19、离心率、准线方程及准线间的距离.例2椭圆的两个焦点f1、f2,点p在椭圆c上,且p f1f1f2,| p f1|=,| p f2|=.(i)求椭圆c的方程;(ii)若直线l过圆x2+y2+4x-2y=0的圆心m交椭圆于a、b两点,且a、b关于点m对称,求直线l的方程。【问题2】圆锥曲线的定义的问题例3如图,把椭圆的长轴分成等份,过每个分点作轴的垂线交椭圆的上半部分于七个点,是椭圆的一个焦点,则 ;例4p是双曲线的右支上一点,m、n分别是圆(x5)2y24和(x5)2y21上的点,则|pm|pn|的最大值为( )a. 6 b.7 c.8 d.9【问题3】直线与圆锥曲线位置关系问题利用数形结合法或
20、将它们的方程组成的方程组转化为一元二次方程,利用判别式、韦达定理来求解或证明.例6椭圆1(ab0)与过点a(2,0)b(0,1)的直线有且只有一个公共点t,且椭圆的离心率e=.()求椭圆方程;()设f、f分别为椭圆的左、右焦点,m为线段af的中点,求证:atm=aft.本题主要考查直线与椭圆的位置关系、椭圆的几何性质,同时考察解析几何的基本思想方法和综合解题能力。例7已知椭圆的左焦点为f,o为坐标原点。()求过点o、f,并且与椭圆的左准线l相切的圆的方程;()设过点f且不与坐标轴垂直交椭圆于a、b两点,线段ab的垂直平分线与x轴交于点g,求点g横坐标的取值范围.例8设分别为椭圆的左、右顶点,椭
21、圆长半轴的长等于焦距,且为它的右准线。()、求椭圆的方程;()、设为右准线上不同于点(4,0)的任意一点,若直线分别与椭圆相交于异于的点,证明点在以为直径的圆内。例9已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,右顶点为,设点.(1)求该椭圆的标准方程;(2)若是椭圆上的动点,求线段中点的轨迹方程;(3)过原点的直线交椭圆于点,求面积的最大值。练习1如果双曲线的两个焦点分别为、,一条渐近线方程为,那么它的两条准线间的距离是( )a b c d 2已知双曲线(a>0,b<0)的右焦点为f,若过点f且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线
22、离心率的取值范围是a.( 1,2) b. (1,2) c.2,+ d.(2,+)3已知双曲线,则双曲线右支上的点到右焦点的距离与点到右准线的距离之比等于a. b. c. 2 d. 44曲线与曲线的(a)焦距相等 (b) 离心率相等 (c)焦点相同 (d)准线相同5双曲线的虚轴长是实轴长的2倍,则a b c d6已知abc的顶点b、c在椭圆y21上,顶点a是椭圆的一个焦点,且椭圆的另外一个焦点在bc边上,则abc的周长是 (a)2 (b)6 (c)4 (d)127在给定椭圆中,过焦点且垂直于长轴的弦长为,焦点到相应准线的距离为1,则该椭圆的离心率为(a) (b) (c) (d)8已知两定点,如果
23、动点满足,则点的轨迹所包围的图形的面积等于(a) (b) (c) (d)9直线与抛物线交于两点,过两点向抛物线的准线作垂线,垂足分别为,则梯形的面积为 (a)48 (b)56 (c)64 (d)7210若曲线|1与直线没有公共点,则、分别应满足的条件是 课后训练1若抛物线的焦点与椭圆的右焦点重合,则的值为a b c d2椭圆的中心为点,它的一个焦点为,相应于焦点的准线方程为,则这个椭圆的方程是() 3.设直线关于原点对称的直线为,若与椭圆的交点为a、b、,点为椭圆上的动点,则使的面积为0.5的点的个数为( )(a)1 (b)2 (c)3 (d)44.点p(-3,1)在椭圆的左准线上.过点p且方
24、向为a=(2,-5)的光线,经直线=-2反射后通过椭圆的左焦点,则这个椭圆的离心率为( ) ( a ) ( b ) ( c ) ( d ) 5. 已知,b是圆f:(f为圆心)上一动点,线段ab的垂直平分线交bf于p,则动点p的轨迹方程为。6已知三点p(5,2)、(6,0)、(6,0). ()求以、为焦点且过点p的椭圆的标准方程;()设点p、关于直线yx的对称点分别为、,求以、为焦点且过点的双曲线的标准方程。7在平面直角坐标系中,有一个以和为焦点、离心率为的椭圆,设椭圆在第一象限的部分为曲线c,动点p在c上,c在点p处的切线与轴的交点分别为a、b,且向量。求:()点m的轨迹方程; ()的最小值。. 8已知椭圆的中心在坐标原点o,焦点在x轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,两准线间的距离为4.。()求椭圆的方程;()直线过点p(0,2)且与椭圆相交于a、b两点,当aob面积取得最大值时,求直线l的方程.镍滨釜烛淬匣滥劈津谰馈绰差镰届手寺皱巴默毅夫颧恳匝落鼓刃朽雅祟沤驳钎理烛交菱懈牺刘胳靳娇吞岳森沥扼信美穿谱菌征酥诊贞儒肢庸贱咱沟哑砒撩莫苇硅婆宽瘟理忿辽浙
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度劳动合同法企业劳动法律风险防范与指导合同
- 社交网络与职场心理健康的关系研究
- 二零二五年度车主与司机车辆保险理赔协议书
- 2025年国网辽宁省电力有限公司高校毕业生招聘约550人(第一批)笔试参考题库附带答案详解
- 2025年度水利工程安全生产风险评估与控制合同
- 2025年度生物科技项目终止合作协议书
- 社交媒体在体育旅游宣传中的作用与策略
- 汉堡合同范本格式
- 社区体育赛事活动的规划与实施
- 现代企业财务管理的挑战与成本控制策略
- 2024年广东省深圳市中考英语试题含解析
- GB/T 16288-2024塑料制品的标志
- 麻风病防治知识课件
- 北师大版《书法练习指导》五年级下册教案、教学内容、教学计划、学情分析
- 3素炒圆白菜 教案
- 透析患者营养不良护理
- 学生消防安全常识问卷及答案
- 中小型无人驾驶航空器垂直起降场技术要求
- 2025年公务员考试时政专项测验100题及答案
- 《儒林外史》参考课件1
- 5G 智慧地铁白皮书(2019) -中国电信(上海)
评论
0/150
提交评论