学案10 函数的图象_第1页
学案10 函数的图象_第2页
学案10 函数的图象_第3页
学案10 函数的图象_第4页
学案10 函数的图象_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、学案10函数的图象导学目标: 1.掌握作函数图象的两种基本方法:描点法,图象变换法.2.掌握图象变换的规律,能利用图象研究函数的性质自主梳理1应掌握的基本函数的图象有:一次函数、二次函数、幂函数、指数函数、对数函数等2利用描点法作图:确定函数的定义域;化简函数的解析式;讨论函数的性质(_、_、_);画出函数的图象3利用基本函数图象的变换作图:(1)平移变换:函数yf(xa)的图象可由yf(x)的图象向_(a>0)或向_(a<0)平移_个单位得到;函数yf(x)a的图象可由函数yf(x)的图象向_(a>0)或向_(a<0)平移_个单位得到(2)伸缩变换:函数yf(ax)

2、(a>0)的图象可由yf(x)的图象沿x轴伸长(0<a<1)或缩短(_)到原来的倍得到;函数yaf(x) (a>0)的图象可由函数yf(x)的图象沿y轴伸长(_)或缩短(_)为原来的_倍得到(可以结合三角函数中的图象变换加以理解)(3)对称变换:奇函数的图象关于_对称;偶函数的图象关于_轴对称;f(x)与f(x)的图象关于_轴对称;f(x)与f(x)的图象关于_轴对称;f(x)与f(x)的图象关于_对称;f(x)与f(2ax)的图象关于直线_对称;曲线f(x,y)0与曲线f(2ax,2by)0关于点_对称;|f(x)|的图象先保留f(x)原来在x轴_的图象,作出x轴下方

3、的图象关于x轴的对称图形,然后擦去x轴下方的图象得到;f(|x|)的图象先保留f(x)在y轴_的图象,擦去y轴左方的图象,然后作出y轴右方的图象关于y轴的对称图形得到自我检测1(2009·北京)为了得到函数ylg的图象,只需把函数ylg x的图象上所有的点()A向左平移3个单位长度,再向上平移1个单位长度B向右平移3个单位长度,再向上平移1个单位长度 C向左平移3个单位长度,再向下平移1个单位长度D向右平移3个单位长度,再向下平移1个单位长度2(2011·烟台模拟)已知图1是函数yf(x)的图象,则图2中的图象对应的函数可能是()Ayf(|x|)By|f(x)|Cyf(|x

4、|)Dyf(|x|)3函数f(x)x的图象关于 ()Ay轴对称B直线yx对称C坐标原点对称D直线yx对称4使log2(x)<x1成立的x的取值范围是()A(1,0)B1,0)C(2,0)D2,0)5(2011·潍坊模拟)已知f(x)ax2,g(x)loga|x|(a>0且a1),若f(4)·g(4)<0,则yf(x),yg(x)在同一坐标系内的大致图象是()探究点一作图例1(1)作函数y|xx2|的图象;(2)作函数yx2|x|的图象;(3)作函数的图象变式迁移1作函数y的图象探究点二识图例2(1)函数yf(x)与函数yg(x)的图象如图,则函数yf(x)

5、·g(x)的图象可能是 ()(2)已知yf(x)的图象如图所示,则yf(1x)的图象为 ()变式迁移2(1)(2010·山东)函数y2xx2的图象大致是 ()(2)函数f(x)的部分图象如图所示,则函数f(x)的解析式是 ()Af(x)xsin xBf(x)Cf(x)xcos xDf(x)x·(x)·(x)探究点三图象的应用例3若关于x的方程|x24x3|ax至少有三个不相等的实数根,试求实数a的取值范围变式迁移3(2010·全国)直线y1与曲线yx2|x|a有四个交点,则a的取值范围是_数形结合思想的应用例(5分)(2010·北京东

6、城区一模)定义在R上的函数yf(x)是减函数,且函数yf(x1)的图象关于(1,0)成中心对称,若s,t满足不等式f(s22s)f(2tt2)则当1s4时,的取值范围是()A.B.C.D.【答题模板】答案D解析因函数yf(x1)的图象关于(1,0)成中心对称,所以该函数的图象向左平移一个单位后的解析式为yf(x),即yf(x)的图象关于(0,0)对称,所以yf(x)是奇函数又yf(x)是R上的减函数,所以s22st22t,令yx22x(x1)21,图象的对称轴为x1,当1s4时,要使s22st22t,即s1|t1|,当t1时,有st1,所以1;当t<1时,即s11t,即st2,问题转化成

7、了线性规划问题,画出由1s4,t<1,st2组成的不等式组的可行域.为可行域内的点到原点连线的斜率,易知<1.综上可知选D.【突破思维障碍】当s,t位于对称轴x1的两边时,如何由s22st22t判断s,t之间的关系式,这时s,t与对称轴x1的距离的远近决定着不等式s22st22t成立与否,通过数形结合判断出关系式s11t,从而得出st2,此时有一个隐含条件为t<1,再结合1s4及要求的式子的取值范围就能联想起线性规划,从而突破了难点要画出s,t所在区域时,要结合的几何意义为点(s,t)和原点连线的斜率,确定s为横轴,t为纵轴【易错点剖析】当得到不等式s22st22t后,如果没

8、有函数的思想将无法继续求解,得到二次函数后也容易只考虑s,t都在二次函数yx22x的增区间1,)内,忽略考虑s,t在二次函数对称轴两边的情况,考虑了s,t在对称轴的两边,也容易漏掉隐含条件t<1及联想不起来线性规划1掌握作函数图象的两种基本方法(描点法,图象变换法),在画函数图象时,要特别注意到用函数的性质(如单调性、奇偶性等)解决问题2合理处理识图题与用图题(1)识图对于给定函数的图象,要能从图象的左右、上下分布范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性、周期性(2)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获

9、得问题结果的重要工具,要重视数形结合解题的思想方法,常用函数图象研究含参数的方程或不等式解集的情况(满分:75分)一、选择题(每小题5分,共25分)1(2010·重庆)函数f(x)的图象()A关于原点对称B关于直线yx对称C关于x轴对称D关于y轴对称2(2010·湖南)用mina,b表示a,b两数中的最小值若函数f(x)min|x|,|xt|的图象关于直线x对称,则t的值为()A2B2C1D13(2011·北京海淀区模拟)在同一坐标系中画出函数ylogax,yax,yxa的图象,可能正确的是()4(2011·深圳模拟)若函数yf(x)的图象如图所示,则函

10、数yf(x1)的图象大致为()5设b>0,二次函数yax2bxa21的图象为下列之一,则a的值为 ()A1B1C.D.题号12345答案二、填空题(每小题4分,共12分)6为了得到函数y3×()x的图象,可以把函数y()x的图象向_平移_个单位长度7(2011·黄山月考)函数f(x)的图象对称中心是_8(2011·沈阳调研)如下图所示,向高为H的水瓶A、B、C、D同时以等速注水,注满为止(1)若水量V与水深h函数图象是下图的(a),则水瓶的形状是_;(2)若水深h与注水时间t的函数图象是下图的(b),则水瓶的形状是_(3)若注水时间t与水深h的函数图象是下图

11、的(c),则水瓶的形状是_;(4)若水深h与注水时间t的函数的图象是图中的(d),则水瓶的形状是_三、解答题(共38分)9(12分)已知函数f(x)x|mx|(xR),且f(4)0.(1)求实数m的值;(2)作出函数f(x)的图象;(3)根据图象指出f(x)的单调递减区间;(4)根据图象写出不等式f(x)>0的解集;(5)求当x1,5)时函数的值域10(12分)(2011·三明模拟)当x(1,2)时,不等式(x1)2<logax恒成立,求a的取值范围11(14分)已知函数f(x)x22exm1,g(x)x (x>0)(1)若g(x)m有根,求m的取值范围;(2)确定

12、m的取值范围,使得g(x)f(x)0有两个相异实根答案 自主梳理2奇偶性单调性周期性3.(1)左右|a|上下|a|(2)a>1a>10<a<1a(3)原点yyx原点xa(a,b)上方右方自我检测1CA项ylg(x3)1lg10(x3),B项ylg(x3)1lg10(x3),C项ylg(x3)1lg,D项ylg(x3)1lg.2C3Cf(x)xf(x),f(x)是奇函数,即f(x)的图象关于原点对称4A作出ylog2(x),yx1的图象知满足条件的x(1,0)5B由f(4)·g(4)<0得a2·loga4<0,0<a<1.课堂活

13、动区例1解(1)y即y其图象如图所示 (2)y其图象如图所示(3)作出yx的图象,保留yx图象中x0的部分,加上yx的图象中x>0的部分关于y轴的对称部分,即得y|x|的图象变式迁移1解定义域是x|xR且x±1,且函数是偶函数又当x0且x1时,y.先作函数y的图象,并将图象向右平移1个单位,得到函数y (x0且x1)的图象(如图(a)所示)又函数是偶函数,作关于y轴对称图象,得y的图象(如图(b)所示)例2解题导引对于给定的函数的图象,要能从图象的左右、上下分布范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性、周期性,注意图象与函数解析式中参数的关系(1)A从

14、f(x)、g(x)的图象可知它们分别为偶函数、奇函数,故f(x)·g(x)是奇函数,排除B.又x<0时,g(x)为增函数且为正值,f(x)也是增函数,故f(x)·g(x)为增函数,且正负取决于f(x)的正负,注意到x(从小于0趋向于0),f(x)·g(x)+,可排除C、D.(2)A因为f(1-x)=f(-(x-1)),故y=f(1-x)的图象可以由y=f(x)的图象按照如下变换得到:先将y=f(x)的图象关于y轴翻折,得y=f(-x)的图象,然后将y=f(-x)的图象向右平移一个单位,即得y=f(-x+1)的图象.变式迁移2(1)A考查函数y2x与yx2的图

15、象可知:当x<0时,方程2xx20仅有一个零点,且;当x>0时,方程2xx20有两个零点2和4,且.(2)C由图象知f(x)为奇函数,排除D;又0,±,±为方程f(x)0的根,故选C.例3解题导引原方程重新整理为|x24x3|xa,将两边分别设成一个函数并作出它们的图象,即求两图象至少有三个交点时a的取值范围方程的根的个数问题转化为函数图象交点个数问题,体现了考纲中函数与方程的重要思想方法解原方程变形为|x24x3|xa,于是,设y|x24x3|,yxa,在同一坐标系下分别作出它们的图象如图则当直线yxa过点(1,0)时a1;当直线yxa与抛物线yx24x3相切

16、时,由,得,x23xa30,由94(3a)0,得a.由图象知当a1,时方程至少有三个根变式迁移3(1,)解析yx2|x|a当其图象如图所示时满足题意由图知解得1<a<.课后练习区1Df(x)2x2x,因为f(x)f(x),所以f(x)为偶函数所以f(x)图象关于y轴对称2.D令y|x|,y|xt|,在同一坐标系中作出其图象,如图,所以t1.3D选项A、B、C中直线方程中的a的范围与对数函数中的a的范围矛盾4C函数yf(x)的图象与函数yf(x)关于x轴对称,函数yf(x)的图象向左平移1个单位即得到函数yf(x1)的图象5Bb>0,前两个图象不是给出的二次函数图象,又后两个图

17、象的对称轴都在y轴右边,>0,a<0,又图象过原点,a210,a1.6右1解析y3×()x()x1,y()x向右平移1个单位便得到y()x1.7(1,2)解析f(x)2,函数f(x)图象的对称中心为(1,2)8(1)A(2)D(3)B(4)C9解(1)f(4)0,4|m4|0,即m4.(2分)(2)f(x)x|x4|(4分)f(x)的图象如右图所示(3)由图可知,f(x)的减区间是2,4(8分)(4)由图象可知f(x)>0的解集为x|0<x<4或x>4(10分)(5)f(5)5>4,由图象知,函数在1,5)上的值域为0,5)(12分)10.解

18、设f1(x)(x1)2,f2(x)logax,要使当x(1,2)时,不等式(x1)2<logax恒成立,只需f1(x)(x1)2在(1,2)上的图象在f2(x)logax的下方即可当0<a<1时,由图象知显然不成立(4分)当a>1时,如图,要使在(1,2)上,f1(x)(x1)2的图象在f2(x)logax的下方,只需f1(2)f2(2),即(21)2loga2,loga21,(10分)1<a2.(12分)11解(1)方法一x>0,g(x)x22e,等号成立的条件是xe.故g(x)的值域是2e,),(4分)因而只需m2e,则g(x)m就有根(6分)方法二作出g(x)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论