递推式求数列通项公式常见类型及解法_第1页
递推式求数列通项公式常见类型及解法_第2页
递推式求数列通项公式常见类型及解法_第3页
递推式求数列通项公式常见类型及解法_第4页
递推式求数列通项公式常见类型及解法_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、递推式求数列通项公式常见类型及解法对于由递推式所确定的数列通项公式问题,通常可通过对递推式的变形转化成 等差数列或等比数列,也可以通过构造把问题转化。下面分类说明。一、型例1. 在数列an中,已知,求通项公式。解:已知递推式化为,即,所以。将以上个式子相加,得。二、型例2. 求数列的通项公式。解:当,即当,所以。三、型例3. 在数列中,求。解法1:设,对比,得。于是,得,以3为公比的等比数列。所以有。解法2:又已知递推式,得上述两式相减,得,因此,数列是以为首项,以3为公比的等比数列。所以,所以。1.(2008陕西卷22)(本小题满分14分)已知数列的首项,求的通项公式;,又,是以为首项,为公

2、比的等比数列,2.(2009陕西卷文)(本小题满分12分)已知数列满足, .令,证明:是等比数列; ()求的通项公式。(1)证当时,所以是以1为首项,为公比的等比数列。(2)解由(1)知当时,当时,。所以。四、型例4. 设数列,求通项公式。解:设,则,所以,即。设这时,所以。由于bn是以3为首项,以为公比的等比数列,所以有。由此得:。说明:通过引入一些尚待确定的系数转化命题结构,经过变形与比较,把问题转化成基本数列(等差或等比数列)。1. 在数列中,()证明数列是等比数列;()求数列的前项和;()证明不等式,对任意皆成立本小题以数列的递推关系式为载体,主要考查等比数列的概念、等比数列的通项公式

3、及前项和公式、不等式的证明等基础知识,考查运算能力和推理论证能力满分12分()证明:由题设,得,又,所以数列是首项为,且公比为的等比数列()解:由()可知,于是数列的通项公式为所以数列的前项和()证明:对任意的,所以不等式,对任意皆成立2.设数列的首项(1)求的通项公式;(2)设,证明,其中为正整数解:(1)由整理得又,所以是首项为,公比为的等比数列,得(2)方法一:由(1)可知,故那么, 又由(1)知且,故,因此为正整数五、型例5. 已知b0,b±1,写出用n和b表示an的通项公式。解:将已知递推式两边乘以,得,又设,于是,原递推式化为,仿类型三,可解得,故。说明:对于递推式,可两

4、边除以,得,引入辅助数列,然后可归结为类型三。1.(2009全国卷理)(本小题满分12分)(注意:在试题卷上作答无效)在数列中, (I)设,求数列的通项公式 (II)求数列的前项和分析:(I)由已知有 利用累差迭加即可求出数列的通项公式: ()(II)由(I)知,=而,又是一个典型的错位相减法模型,易得 =评析:09年高考理科数学全国(一)试题将数列题前置,考查构造新数列和利用错位相减法求前n项和,一改往年的将数列结合不等式放缩法问题作为押轴题的命题模式。具有让考生和一线教师重视教材和基础知识、基本方法基本技能,重视两纲的导向作用。也可看出命题人在有意识降低难度和求变的良苦用心。2. 在数列中

5、,其中()求数列的通项公式;()求数列的前项和;()证明存在,使得对任意均成立本小题以数列的递推关系式为载体,主要考查等比数列的前项和公式、数列求和、不等式的证明等基础知识与基本方法,考查归纳、推理、运算及灵活运用数学知识分析问题和解决问题的能力满分14分()解法一:,由此可猜想出数列的通项公式为以下用数学归纳法证明(1)当时,等式成立(2)假设当时等式成立,即,那么这就是说,当时等式也成立根据(1)和(2)可知,等式对任何都成立解法二:由,可得,所以为等差数列,其公差为1,首项为0,故,所以数列的通项公式为()解:设,当时,式减去式,得,这时数列的前项和当时,这时数列的前项和()证明:通过分

6、析,推测数列的第一项最大,下面证明:由知,要使式成立,只要,因为所以式成立因此,存在,使得对任意均成立六、型例6. 已知数列,求。解:在两边减去。所以为首项,以。所以令上式,再把这个等式累加,得。所以 。说明:可以变形为,就是,则可从,解得,于是是公比为的等比数列,这样就转化为前面的类型五。等差、等比数列是两类最基本的数列,是数列部分的重点,自然也是高考考查的热点,而考查的目的在于测试灵活运用知识的能力,这个“灵活”往往集中在“转化”的水平上。转化的目的是化陌生为熟悉,当然首先是等差、等比数列,根据不同的递推公式,采用相应的变形手段,达到转化的目的。1. 设a1=1,a2=,an+2=an+1

7、-an (n=1,2,-),令bn=an+1-an (n=1,2-)(1) 求数列bn的通项公式,(2)求数列nan的前n项的和Sn。2数列中,且满足 求数列的通项公式;设,求;设=,是否存在最大的整数,使得对任意,均有成立?若存在,求出的值;若不存在,请说明理由。解:(1)由题意,为等差数列,设公差为,由题意得,.(2)若,时,故 (3)若对任意成立,即对任意成立,的最小值是,的最大整数值是7。即存在最大整数使对任意,均有说明:本例复习数列通项,数列求和以及有关数列与不等式的综合问题。3.(2009全国卷理)(本小题满分12分)设数列的前项和为 已知(I)设,证明数列是等比数列 (II)求数

8、列的通项公式。解:(I)由及,有由, 则当时,有得又,是首项,公比为的等比数列(II)由(I)可得,数列是首项为,公差为的等比数列, 评析:第(I)问思路明确,只需利用已知条件寻找第(II)问中由(I)易得,这个递推式明显是一个构造新数列的模型:,主要的处理手段是两边除以总体来说,09年高考理科数学全国I、这两套试题都将数列题前置,主要考查构造新数列(全国I还考查了利用错位相减法求前n项和的方法),一改往年的将数列结合不等式放缩法问题作为押轴题的命题模式。具有让考生和一线教师重视教材和基础知识、基本方法基本技能,重视两纲的导向作用。也可看出命题人在有意识降低难度和求变的良苦用心。例7Sn 法:

9、例8:设数列满足,()求数列的通项;()设,求数列的前项和(I)验证时也满足上式,(II) , , 1已知数列中,是其前项和,并且,设数列,求证:数列是等比数列;设数列,求证:数列是等差数列;求数列的通项公式及前项和。分析:由于b和c中的项都和a中的项有关,a中又有S=4a+2,可由S-S作切入点探索解题的途径解:(1)由S=4a,S=4a+2,两式相减,得S-S=4(a-a),即a=4a-4a(根据b的构造,如何把该式表示成b与b的关系是证明的关键,注意加强恒等变形能力的训练)a-2a=2(a-2a),又b=a-2a,所以b=2b 已知S=4a+2,a=1,a+a=4a+2,解得a=5,b=a-2a=3 由和得,数列b是首项为3,公比为2的等比数列,故b=3·2当n2时,S=4a+2=2(3n-4)+2;当n=1时,S=a=1也适合上

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论