spss19.0软件介绍_第1页
spss19.0软件介绍_第2页
spss19.0软件介绍_第3页
spss19.0软件介绍_第4页
spss19.0软件介绍_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、统计分析软件spss19.0的分析操作过程。1.打开spss,出现一个对话框,左下角有数据视图和变量视图,可以相互切换。 在数据视图中,相当于是一个表格,第一行全是“变量”的字样,可以直接输入 所观测的数据,也可以通过打开已经设计好的 excel表格。aIS3SBD1 - IBM SKi*a(E; n田也i H»;cj Hjt©I*:Ul Effilgh 彌说口删 MW*Hffioi»|J|打幷丸本SiJliiRl芜植CM+F 1杲在CfcrkSStM'LJjJ- l谓存隋豪憔lit澤曲駄UW(0L.幷袞件标记对貝5宫見示觀1立幷"ALQ)希窓町

2、也.f"wi4-P»丹护“狂屢迫L.*打唤打砲ch*f*-MB遥理I茜暂出曲糾事S32点击菜单栏第一项“文件”里的“打开”,打开已经获得的数据,在数据视图 情形下,点击主菜单的“分析”,选择“分类”,在里面选择“判别分析”,出现 下面的判别分析主对话框。3. 导入分组变量和自变量,指定分析变量。1)指定分类变量及其范围:在主对话框中左边的矩形框中选择已知的观测量所 属类别的变量(一定是离散变量),点击“分组变量”框左边的右拉箭头按钮, 将所选变量名移到该矩形框中,此时矩形框下的“定义范围”按钮加亮,点击该 按钮,显示一个小对话框,提供指定该分类变量的数值范围。 设定后,按“

3、继续” 按钮,回到主对话框。端判别分折52 I井组娈量吃::X1X2X3|保存X4*起霄O使用土X5悬小值;11)指定判别分析的自变量:在主对话框中左边的变量框中选择表明观测量特征的雄填H血消帮助变量,点击“自变量”框左边的右拉箭头按钮,使该变量名移到该矩形框中,作 为参与判别分析的自变量。3)选择变量:一般均使用数据文件中的所有合法观测量,此步骤可省略。4. 选择分析方法在主对话框中自变量矩形框下面有两个选择项选择判别分析方法:1)一起输入自变量选项,当认为所有自变量都能对观测量特性提供丰富的信息时 使用该选择项。2)点击下面的“使用步进式方法”即逐步判别法,进入判别模型的自变量根据对判别贡

4、献的大小进行逐步选择。选中该项后,“方法”按钮加亮,可以进一步选择判别分析方法。4)设置逐步判别分析点击“方法”按钮,打开设置逐步判别分析方法对话框,方法默认为Milks Lambra越判别分祈:歩避怎赵 Wilks' lambdaGV) O未解釋方差世).Mahalanobis:最小 F标准®便用F值 _ 3SA(E: |3 B4'使用F的瞬率巳O Rao s V(R)两两组间距蔑的F方法栏: Wilks 'lambda选项,每步都是 Wilk的统计量'最小的进入判别函数 未解释方差复选项,每步都是使各类不可解释的方差和最小的变量进入判别 函数。 M

5、ahalanobis距离选项,每步都使靠的最近的两类间的Mahalanobis距离最大的变量进入判别函数。 最小F值选项,每步都使任何两类间的最小的F值最大的变量进入判别函数。 Rao' s V选项,每步都是使 Rao' s V统计量产生最大增量的变量进入判别函数。可以对一个要加入到模型中的变量的 V值指定一个最小增量。选择此种方 法后,应该在该项下面的V至输入后的矩形框中输入这个增量的指定值。当某变量导致的V值增量大于指定值的变量进入判别函数。本例选入“ Mahalanobis距离”选项。标准栏:选择逐步判别停止的判据,可供选择的判据有: 使用F值:是系统默认的判据,默认值是

6、:进入:3.84 ;移出:2.71。即当被 加入的变量F值=3.84时才把该变量加入到模型中,否则变量不能进入模型; 或者,当要从模型中移出的变量 F值V =2.71时,该变量才被移出模型,否则模 型中的变量不会被移出。 使用F值的概率:加入变量的F值概率的默认值是0.05 (5%);移出变量的q 值概率是0.10 (10%)。removal值(移出变量的正值概率)Entry值(加入 变量的F值概率)。本例选中“使用F值”选项,进入栏输入3.0,删除栏输入2.0.输出栏:对于逐步选择变量的过程和最后结果的显示,可以通过“输出”栏的两项进行选择。步进摘要:要求在逐步选择变量过程中的每一步之后显示

7、每个变量的统计量。两两组间距离的F值:要求显示两类之间的F值矩阵。 本例两项都不选择。7)统计量输出设置回到判别分析页面,点击统计量按钮,选择描述性中的均值选项,矩阵中不选, 判别函数系数中Fisher选项。点击“继续”。 “描述性”栏选择输出描述统计量:均值复选项:可以输出各类中各自变量的均值,标准差和各自变量总样本的均值 和标准差。单变量ANOV复选项:对各个自变量进行均值假设检验,输出单变量的方差分析 结果。Box' s M复选项:对各类的协防差矩阵相等的假设进行检验。本例选“均值”选项。 “函数系数”栏选择输出判别函数系数。Fisher ' s复选项:给出Bayes判别

8、函数的系数,名字Fisher ' s是因为按判别函 数值最大的一组进行归类这种思想是由 Fisher提出来的。未标准化复选项:未经标准化处理的判别系数。本例选Fisher ' s选项 “矩阵”栏选择输出自变量的系数矩阵组内相关复选项:它是根据在计算相关矩阵之前将各组协方差矩阵平均后计算组 内相关矩阵。组内协方差复选项:即计算并显示合并组内协方差矩阵, 是将各组协方差矩阵平 均后计算的,区别于总协方差阵。分组协方差复选项:对每类输出显示一个协方差矩阵。总体协方差复选项:计算并显示总样本的协方差矩阵。8)分类栏指定分类参数和判别结果回到主页面,点选分类按钮,将输出和图中的选项全部选

9、取,先验概率选择“所 有组相等”,使用协方差矩阵选择“在组内”。 “先验概率”栏所有组相等:各组先验概率相等,若分为 n组,则各组先验概率均为1/n. 根据组大小计算:由各组的样本量计算决定,即各类的先验概率与其样本量成正 比。 “使用协方差矩阵”栏在组内:指定使用合并组内协方差矩阵进行分类。分组:指定使用各组协方差矩阵进行分类,由于分类是根据判别函数而不是根据 原始变量,因此该选择项不是总等价于二次判别。本例选在组内选项。 “输出”栏个案结果:输出每个观测量包括判别分数、实际类、预测类和后验概率等。其附 属选项:将个案限制在前,在矩形框中输入观测量数n,选择此项则仅输出前n个观测量,观测数量

10、大时可以选择此项。摘要表:要求输出分类的小结,给出正确分类观测量数和错分类观测量数和错分 率。不考虑该个案时的分类:输出对每个观测量进行分类的结果, 所依据的判别函数 是由除该观测量以外的其他观测量导出的。也称为交互校验结果。 图合并图:生成一张包括各组的散点图。该散点图是根据前两个判别函数值作的散 点图。如果只有一个判别函数,就输出直方图。分组:根据前两个判别函数值对每一组生成一张散点图,共分为几组就生成几张 散点图。如果只有一个判别函数,就输出直方图。区域图:生成用于根据函数值把观测量分到各组中去的边界图。 此种统计图把一 张图的平面划分出与类数相同的区域。 每一类占据一个区,各类的均值在

11、各区中 用星号标出。如果仅有一个判别函数,则不作此图。6 缺失值处理:用该变量的均值代替缺失值。6点击保存按钮,勾选“预测组成员”这个选项7哼=:一;:卞2.-;、可=:.笑MTASET 垃 IL'证DiSCRIMII'JAMTDISCRIMINANT?GR0UPS=y1 3)/VARIABLE5=K1 X2 X3 X4 X4ANALYSIS ALL/SAVECLASS PROBSAIETHOD=MINRESID.FIN=3.0/FOUT=2 0/PRIORS SIZE-HISTORYNONESTnSTICS=MEAN STDDEV COEFF TABLE/PLQFT=COMe

12、WEDCLSSIFY=NONMISSING POOLED7点击粘贴按钮,出现一个语法编辑器对话框,里面有先验概率按照默认方式处 理的程序代码,点击菜单栏里的“运行”,选择“全部”。13U15 :S输出结果与分析:GET DATA/TYPE=XLS/FILE='C:UserslDesktopd.xls'/SHEET=n ame 'Sheet1'/CELLRANGE=full/READNAMES=on/ASSUMEDSTRWIDTH=32767.EXECUTE.DATASET NAME数 据集 1 WINDOW=FRONT.DATASET ACTIVATE 数据集 1.DISCRIMINANT

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论