二元一次不等式(组)与简单的线性规划问题优秀课件_第1页
二元一次不等式(组)与简单的线性规划问题优秀课件_第2页
二元一次不等式(组)与简单的线性规划问题优秀课件_第3页
二元一次不等式(组)与简单的线性规划问题优秀课件_第4页
二元一次不等式(组)与简单的线性规划问题优秀课件_第5页
已阅读5页,还剩83页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、7.3二元一次不等式二元一次不等式(组组)与简单的线性规划问与简单的线性规划问题题基础知识自主学习基础知识自主学习课时作业课时作业题型分类深度剖析题型分类深度剖析内容索引内容索引基础知识自主学习基础知识自主学习(1)一般地,二元一次不等式AxByC0在平面直角坐标系中表示直线AxByC0某一侧所有点组成的 .我们把直线画成虚线以表示区域 边界直线.当我们在坐标系中画不等式AxByC0所表示的平面区域时,此区域应 边界直线,则把边界直线画成 .(2)由于对直线AxByC0同一侧的所有点(x,y),把它的坐标(x,y)代入AxByC,所得的符号都 ,所以只需在此直线的同一侧取一个特殊点(x0,y0

2、)作为测试点,由Ax0By0C的即可判断AxByC0表示的直线是AxByC0哪一侧的平面区域.1.二元一次不等式表示的平面区域二元一次不等式表示的平面区域知识梳理知识梳理平面区域不包括实线包括符号相同2.线性规划相关概念线性规划相关概念名称意义约束条件由变量x,y组成的一次不等式线性约束条件由x,y的不等式(或方程)组成的不等式组目标函数欲求 或 的函数线性目标函数关于x,y的 解析式一次最大值最小值一次可行解满足 的解可行域所有 组成的集合最优解使目标函数取得 或 的可行解线性规划问题在线性约束条件下求线性目标函数的 或问题线性约束条件可行解最大值最小值最大值最小值画二元一次不等式表示的平面

3、区域的直线定界,特殊点定域:(1)直线定界:不等式中无等号时直线画成虚线,有等号时直线画成实线;(2)特殊点定域:若直线不过原点,特殊点常选原点;若直线过原点,则特殊点常选取(0,1)或(1,0)来验证.3.重要结论重要结论1.利用“同号上,异号下”判断二元一次不等式表示的平面区域对于AxByC0或AxByC0时,区域为直线AxByC0的上方;(2)当B(AxByC)0表示的平面区域一定在直线AxByC0的上方.()(3)点(x1,y1),(x2,y2)在直线AxByC0同侧的充要条件是(Ax1By1C)(Ax2By2C)0,异侧的充要条件是(Ax1By1C)(Ax2By2C)0.()思考辨析

4、思考辨析(4)第二、四象限表示的平面区域可以用不等式xy0表示.()(5)线性目标函数的最优解是唯一的.()(6)最优解指的是使目标函数取得最大值或最小值的可行解.()(7)目标函数zaxby(b0)中,z的几何意义是直线axbyz0在y轴上的截距.() 1.下列各点中,不在xy10表示的平面区域内的是A.(0,0) B.(1,1)C.(1,3) D.(2,3)考点自测考点自测答案解析把各点的坐标代入可得(1,3)不适合,故选C. 答案解析用特殊点代入,比如(0,0),容易判断为C. A.0 B.3 C.4 D.5答案解析不等式组表示的可行域如图中阴影部分所示.令z2xy,则y2xz,作直线2

5、xy0并平移,当直线过点A时,截距最大,即z取得最大值,几何画板展示几何画板展示答案解析0画出可行域为阴影部分.z3xy,即y3xz过交点A时,z最小.几何画板展示几何画板展示5.(教材改编)投资生产A产品时,每生产100吨需要资金200万元,需场地200平方米;投资生产B产品时,每生产100吨需要资金300万元,需场地100平方米.现某单位可使用资金1 400万元,场地900平方米,则上述要求可用不等式组表示为_(用x,y分别表示生产A,B产品的吨数,x和y的单位是百吨).答案解析用表格列出各数据AB总数产品吨数xy 资金200 x300y1 400场地200 x100y900所以不难看出,

6、x0,y0,200 x300y1 400,200 x100y900.题型分类深度剖析题型分类深度剖析例例1(1)不等式(x2y1)(xy3)0在坐标平面内表示的区域(用阴影部分表示),应是下列图形中的题型一二元一次不等式题型一二元一次不等式(组组)表示的平面区域表示的平面区域命题点命题点1不含参数的平面区域问题不含参数的平面区域问题 答案解析 答案解析 命题点命题点2含参数的平面区域问题含参数的平面区域问题答案解析又当m3时,不满足题意,应舍去,m1.答案解析几何画板展示几何画板展示不等式组表示的平面区域如图所示.思维升华(1)求平面区域的面积:首先画出不等式组表示的平面区域,若不能直接画出,

7、应利用题目的已知条件转化为不等式组问题,从而再作出平面区域;对平面区域进行分析,若为三角形应确定底与高,若为规则的四边形(如平行四边形或梯形),可利用面积公式直接求解,若为不规则四边形,可分割成几个三角形分别求解再求和即可.(2)利用几何意义求解的平面区域问题,也应作出平面图形,利用数形结合的方法去求解. 答案解析几何画板展示几何画板展示由图可知,当m1时,函数y2x的图象上存在点(x,y)满足约束条件,故m的最大值为1. A.1 B.1 C.0 D.2答案解析由于x1与xy40不可能垂直,所以只可能xy40与kxy0垂直或x1与kxy0垂直.当xy40与kxy0垂直时,k1,检验知三角形区域

8、面积为1,即符合要求.当x1与kxy0垂直时,k0,检验不符合要求.题型二求目标函数的最值问题题型二求目标函数的最值问题命题点命题点1求线性目标函数的最值求线性目标函数的最值答案解析命题点命题点2求非线性目标函数的最值求非线性目标函数的最值解答几何画板展示几何画板展示如图中阴影部分所示.z的取值范围是2,).(2)若zx2y2,求z的最大值与最小值,并求z的取值范围.解答zx2y2表示可行域内的任意一点与坐标原点之间距离的平方.因此x2y2的最小值为OA2,最大值为OB2.z的取值范围是1,5.引申探究引申探究解答z的取值范围是(,0.2.若zx2y22x2y3.求z的最大值、最小值.解答zx

9、2y22x2y3(x1)2(y1)21,命题点命题点3求参数值或取值范围求参数值或取值范围5答案解析显然,当m2时,不等式组表示的平面区域是空集;当m2时,不等式组表示的平面区域只包含一个点A(1,1).此时zmin1101.显然都不符合题意.平面区域为一个三角形区域,由图可知,当直线yxz经过点C时,z取得最小值,答案解析作出不等式组表示的可行域,如图(阴影部分).思维升华(1)先准确作出可行域,再借助目标函数的几何意义求目标函数的最值.(2)当目标函数是非线性的函数时,常利用目标函数的几何意义来解题,(3)当目标函数中含有参数时,要根据临界位置确定参数所满足的条件. 答案解析A.2 B.1

10、 C.1 D.2对于选项A,当m2时,可行域如图,直线y2xz的截距可以无限小,z不存在最大值,不符合题意,故A不正确;对于选项B,当m1时,mxy0等同于xy0,可行域如图,直线y2xz的截距可以无限小,z不存在最大值,不符合题意,故B不正确;对于选项C,当m1时,可行域如图,当直线y2xz过点A(2,2)时截距最小,z最大为2,满足题意,故C正确;对于选项D,当m2时,可行域如图,直线y2xz与直线OB平行,截距最小值为0,z最大为0,不符合题意,故D不正确.答案解析题型三线性规划的实际应用问题题型三线性规划的实际应用问题例例6某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个

11、,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.(1)试用每天生产的卫兵个数x与骑兵个数y表示每天的利润(元);解答依题意每天生产的伞兵个数为100 xy,所以利润5x6y3(100 xy)2x3y300.(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?解答目标函数为2x3y300,作出可行域,如图所示,作初始直线l0:2x3y0,平移l0,当l0经过点A时,有最大值,最优解为A(50,50),此时max550元.故每天生产卫兵50个,骑兵50个,伞兵0

12、个时利润最大,且最大利润为550元.思维升华解线性规划应用问题的一般步骤(1)审题:仔细阅读材料,抓住关键,准确理解题意,明确有哪些限制条件,借助表格或图形理清变量之间的关系.(2)设元:设问题中起关键作用(或关联较多)的量为未知量x,y,并列出相应的不等式组和目标函数.(3)作图:准确作出可行域,平移找点(最优解).(4)求解:代入目标函数求解(最大值或最小值).(5)检验:根据结果,检验反馈.跟踪训练跟踪训练3某电视机厂计划在下一个生产周期内生产两种型号电视机,每台A型或B型电视机所得利润分别为6和4个单位,而生产一台A型和B型电视机所耗原料分别为2和3个单位,所需工时分别为4和2个单位,

13、如果允许使用的原料为100个单位,工时为120个单位,且A型和B型电视机产量分别不低于5台和10台,应当生产每种类型电视机多少台,才能使利润最大?解答设生产A型电视机x台,B型电视机y台,线性目标函数为z6x4y.根据约束条件作出可行域如图中阴影部分整点所示,作直线l0:3x2y0,当直线l0平移至点A时,z取最大值,所以生产两种类型电视机各20台时,所获利润最大. 含参数的线性规划问题含参数的线性规划问题现场纠错系列现场纠错系列8(1)含参数的平面区域问题,要结合直线的各种情况进行分析,不能凭直觉解答.(2)目标函数含参的线性规划问题,要根据z的几何意义确定最优解,切忌搞错符号.错解展示典例

14、典例(1)在直角坐标系xOy中,若不等式组 表示一个三角形区域,则实数k的取值范围是_.(2)已知x,y满足约束条件 若zaxy的最大值为4,则a_.现场纠错纠错心得解析解析(1)如图,直线yk(x1)1过点(1,1),作出直线y2x,当k1或0k2时,不等式组表示一个三角形区域.(2)由不等式组表示的可行域,可知zaxy在点A(1,1)处取到最大值4,a14,a3.答案答案(1)(,1)(0,2)(2,)(2)3返回解析解析(1)直线yk(x1)1过定点(1,1),当这条直线的斜率为负值时,该直线与y轴的交点必须在坐标原点上方,即直线的斜率为(,1),只有此时可构成三角形区域.(2)作出不等

15、式组表示的可行域如图中阴影部分所示.zaxy等价于yaxz,因为z的最大值为4,即直线yaxz的纵截距最大为4.若zaxy在A(1,1)处取得最大值,则纵截距必小于2,故只有直线yaxz过点(2,0)且a0所表示的平面区域内,则m的取值范围是A.m1 B.m1 C.m1答案解析由2m350,得m1.123456789101112131415答案解析如图,作出不等式组表示的可行域,当函数ylog2x的图象过点(2,1)时,实数m有最大值1.1234567891011121314153.直线2xy100与不等式组 表示的平面区域的公共点有答案解析A.0个 B.1个C.2个 D.无数个1234567

16、89101112131415由不等式组画出可行域的平面区域如图(阴影部分).直线2xy100恰过点A(5,0),且其斜率k20)仅在点(3,0)处取得最大值,则a的取值范围是_.答案解析画出x、y满足约束条件的可行域如图所示,要使目标函数zaxy仅在点(3,0)处取得最大值,则直线yaxz的斜率应小于直线x2y30的斜率,即a ,1234567891011121314153,11答案解析123456789101112131415设z ,则z的几何意义为动点P(x,y)到定点D(1,1)的斜率.画出可行域如图阴影部分所示,则易得zkDA,kDB,易得z1,5,z12z3,11.123456789

17、101112131415答案解析作出图形可知,ABF所围成的区域即为区域D,其中A(0,1)是z在D上取得最小值的点,B,C,D,E,F是z在D上取得最大值的点,则T中的点共确定AB,AC,AD,AE,AF,BF共6条不同的直线.612345678910111213141514. 已知D是以点A(4,1),B(1,6),C(3,2)为顶点的三角形区域(包括边界与内部).如图所示.(1)写出表示区域D的不等式组;解答直线AB,AC,BC的方程分别为7x5y230,x7y110,4xy100.原点(0,0)在区域D内,故表示区域D的不等式组为123456789101112131415(2)设点B(

18、1,6),C(3,2)在直线4x3ya0的异侧,求a的取值范围.解答根据题意有4(1)3(6)a4(3)32a0,即(14a)(18a)0,解得18a14.故a的取值范围是(18,14).12345678910111213141515.某客运公司用A、B两种型号的车辆承担甲、乙两地间的长途客运业务,每辆车每天往返一次.A、B两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1 600元/辆和2 400元/辆,公司拟组建一个不超过21辆车的客运车队,并要求B型车不多于A型车7辆.若每天运送人数不少于900,且使公司从甲地去乙地的营运成本最小,那么应配备A型车、B型车各多少辆?解答12345678910111213

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论