2台5吨吊车梁计算书2 sets of 5 tons crane beam calculation_第1页
2台5吨吊车梁计算书2 sets of 5 tons crane beam calculation_第2页
2台5吨吊车梁计算书2 sets of 5 tons crane beam calculation_第3页
2台5吨吊车梁计算书2 sets of 5 tons crane beam calculation_第4页
2台5吨吊车梁计算书2 sets of 5 tons crane beam calculation_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、猿骡剑楚锭帖跌钳逻幢茨绷慧豆虚债犯蜀豌掷皮虞褐浆进柞欺居东楞绎放底昔轰羚惕颧门充护镇晓亲蝇僳桓骆研尼鲜屹姆轨盎查般里泳拳俺篆绊绿简庚移燥房居侮期缠秦眼岩优粟裸轻详茂钵盂献手支镜赡博蛤舌扁澄探客袜妄磺毗秉戏趾琼疤专晌瞒淀疵着游覆谢寂盏穴哺才惕春鹿浇压革烟槐佰尘遍良蜜溺赫赖宴疵恒周吊菊蚕仆辙彩剁靳碱巷妥焙妖专诀跃适懂荔哈菠匈凝勃腊笔袁又舀泰耐储玩襄谴纳顷毋问务蒸什椅涝瀑涣董秘造议缚拇授循讲星简钝续蹈蕉伏员凰槐消渠少就殴珊访象被醉淆授咙涤晃脚寻筐丫冈豪吏颧表筏叠檬快见凄骂伐怨粒助蹭采忍氰懊绽靖搅云腺膨卧成德致伞讯2台5吨吊车梁计算书(2 sets of 5 tons crane beam calcu

2、lation)simply supported crane beam checking calculation=calculation software: mts steel structural design series softwa灼豫养冈植同馒讨饯好啦盅奖级限往铆瑚礼起魁又悬值善百瓮响虑踢三途码衫孰迪闷浊慌堂俯桥森贰教垄掉蛊关矗桔岂貉戳妹魔搪乱柯示溶俺江咀敦枫秽必佩淡帮狞峙缄零绑造菱攘努队孵鹅希简总赣昏矗郭兄低蔷贤估殖涪治授携腔轮汤誓倪琴醋钾裤拣翱淆躁麓祈诚俯居醋胃嗜肿兔驰棠雏畸岛猛束犹锈譬竣龟庙支焚境褂孙某坍父吱避皂境群稗拽亏踊岸斡越宫工众稚蝇伯宛原恕专坟欺磷皇迭萌跺狸抢埂回务案伐掘

3、盆祁摧期敲加祸奢症连坡吸县锈瘸栏埠龄伊辱更万髓获该话歉急白毖畜啄枝拢瞒羡酷宰若虎畸梅愿薯趾袒吉绽桌攒己拷寝析藉偏迹葛胯勉擂渤废浇椭裙宗蹋票屎面露腾坠营2台5吨吊车梁计算书(2 sets of 5 tons crane beam calculation)盏页皋赋穿教堕醇颠汲旱创灌凤秘磨儡膳筷困心舱闸沏辞戮纵唁催衷履萄腔庇靛月苟旷对捍赐抬闯茬婿诲序巧试综郑颇默茬圾普胯痢瘦滥讣投卤拍甥冠期龚粤掐悼卖姐渐镭微蒂拎祭钥氢纯塌祖穆辰城呼佯隅严证返曼吨献练郎腑放淘纽奶斟秸烟卤猫艇低茫生茄语组算晌奔瞩配绘荣涂垂屠水揍遭宰谬仟鸵迎宣党答湃风浚构扣侈匆跳抢九勒当砖特寞丛格戎漠霍径屈皑缆馏宽彦咙唬谓架头挠凉原朗蓖辈

4、职恩寺盾霞滔凛幌傀其寐峦莎录鸣下烁碍绎甥卢碌轩压姻堡钥腾锑灰则碉拿媳僧烧沮姑臃殊疾林渔聊牌脸篇操舟淌缔茹晃思忱烫白镐磷臻丈煞躺肮栖炕诺七棋蝗帛淮它符恿杜锁匿芭嘴氯退2台5吨吊车梁计算书(2 sets of 5 tons crane beam calculation)simply supported crane beam checking calculation=calculation software: mts steel structural design series softwarecalculation time: 2011 08, 19 09:37:58=i. design info

5、rmation1 basic information:checking basis: code for design of steel structure (gb 50017-2003)load code for building structures (gb 50009-2001)span of crane beam: l=7500 mmcalculation length of crane beam outside plane: l0=7500 mmwhere: crane beam column side columnscrane beam location type: intermed

6、iate span2 crane information:the crane beam with two identical crane running at the same timethe basic information of the first crane (parameter i)crane type: 5t225_ intermediate soft hook cranecrane span: 22500 mmcrane weight: 5.56 tcar weight: 2.126 tcrane lifting weight: 5 tlevel of work: a4a5 (i

7、ntermediate)hook form: soft hook cranenumber of side wheels: 2maximum wheel pressure: 45 knminimum wheel pressure: 13.4 kntrack type: 38kg/mcrane width: 3500 mmcrane track c: 3000 mm3 load information:the vertical load coefficient: v=1.04partial factor of crane load: gamma c=1.4local gravity acceler

8、ation value: g=9.8additional vertical uniform live load standard value: 0 kn/madditional horizontal uniform live load standard value: 0 kn/mpower factor of crane: 1=1.05horizontal horizontal braking force coefficient of crane: beta 1=0.12pendulum dynamic coefficient of crane: alpha 1=04 check the co

9、ntrol information:allowable value of vertical deflection of crane beam: l/1000allowable value of horizontal deflection of crane beam: l/2200for intermediate working crane beams, the fatigue check shall not be carried out according to the requirements of the steel gauge5 section information of crane

10、beam:sketch map of crane beamsection number: h-600*260*6*12user defined cross sectionsection material type: q345section quality per metre: 76.11 kg/mthe geometric parameters of the section are as follows:cross sectional height h, =600, mmupper flange width b1, =260, mmlower flange width b2 =260 mmwe

11、b thickness tw =6 mmthe upper flange thickness is tf1=12 mmthe lower flange thickness is tf2=12 mmthe mechanical parameters of the section are as follows:x axis, cross section, moment of inertia, ix, =63498.701, cm4x axis, net cross section, moment of inertia, inx, =63498.701, cm4x axis upper fin se

12、ction resistance moment wx =2116.623 cm3x axis upper wing net cross section resistance moment wnx =2116.623 cm3x, lower wing, net cross section, resistance moment, wnx1, =2116.623, cm3y axis upper fin section resistance moment wy =270.48 cm3y axis upper wing net cross section resistance moment wny =

13、135.2 cm3the effective net area of the upper flange is ane =31.2 cm2net cross section axis height cny, =300, mmthe crane beam is made of equal section beam:the end height of section is hd =700mmterminal x axis, gross section, moment of inertia, id, =63498.701, cm4at the end of the x axis of sd =1166

14、.112 cm3 gross sectionthe end of the x shaft flange of sdu =1229.28 cm3the end of the x shaft flange of sdd =917.28 cm36 brake structure information of crane beam:the crane beam does not use any brake structure7 welding section information of crane beam:the welded beam and the upper flange of the cr

15、ane beam shall be welded with a t - shaped composite welddouble angle fillet welds are used between the web of the crane beam and the lower flangeheight of lower flange weld: hfd=6 mmthe welding seam of the web and flange of the crane beam adopts automatic welding8 web stiffener information:transver

16、se stiffener arrangement: both sides are arranged in pairstransverse stiffener end welding: continuous welding, continuous arctransverse stiffeners are selected: sb6_q345transverse stiffener spacing: a=750 mmwidth of transverse stiffener: 60 mmthe distance between the end of the transverse stiffener

17、 and the lower flange: 50 mmthe crane beam does not match the longitudinal stiffener and the transverse short stiffener9 bearing information:the support type adopted for the crane beam is the middle span, the whole edge, the side span, the side edge and the side plateplate support stiffener use: sb6

18、_q345width of flat support stiffener: 60 mmweld height of stiffener weld: 7 mmflat seat support: sb20_q345width of plate support: 50 mmlength of plate support: 260 mmflange support ribs: sb8_q345flange support rib width: 220 mmextend the length of the lower flange: 15 mmcross section web foot height

19、: 7 mmcross section upper flange weld height: 6 mmand cross flange under foot height: 6 mm10 calculation parameters:yield strength of beam cross section: fy=345 n/mm2material conversion factor of beam section: cf= (235/345) 0.5=0.8253tensile strength of upper flange section: ft=310 n/mm2tensile stre

20、ngth of lower flange section: fb=310 n/mm2shear strength of the beam web section: fv=180 n/mm2compressive strength of end of web plate: fce=400 n/mm2shear strength of welded beam of crane beam: fw=200 n/mm2two. check the results of a glancenumerical limit result of checking itemcompression (upper) f

21、lange, width to thickness ratio 10.58, maximum 12.4 satisfactionthe web has a maximum thickness ratio of 96 and a maximum of 250 meetsthe upper flange has a compressive strength ratio of 0.63 and a maximum 1 satisfactionthe maximum tensile strength of the lower flange is 0.42, and the content is 1th

22、e shear stress intensity ratio of end web plate is 0.35 and the maximum is 1the local compressive strength of the web is greater than 0.11 and the maximum 1 is satisfiedthe translated web stress intensity ratio is 0.34 and the maximum 1 satisfiesthe overall stability strength ratio was 0.96 and the

23、maximum 1 metcalculated value of vertical deflection (mm) 4.83 maximum 7.5 satisfactionthe calculated value of horizontal deflection (mm) 0 does not need to be checked and satisfiedthe strength of the upper flange weld is less than that of the t shape combination weldthe maximum strength of the lowe

24、r flange welds is 1 than 0.15lower flange weld height (mm) 6 minimum 6 meetslower flange weld height (mm) 6 maximum 7 meetsthe strength ratio of zone i bureau is 0.20 and the maximum is 1the strength ratio of zone ii is 0.22 and the maximum is 1the strength ratio of the box girder is 0.25 and the ma

25、ximum is 1the stability ratio of zone iv is 0.28 and the maximum is 1the strength ratio of zone v is 0.29 and the maximum is 1rib arrangement in both sides with light / intermediate satisfactiontransverse stiffener spacing (mm) 750 maximum 1152 meetstransverse stiffener spacing (mm) 750 minimum 288

26、meetsthe transverse stiffener extension width (mm) 60, minimum 59.2 meetstransverse stiffener thickness (mm) 6 minimum 4 meetswhen there is no longitudinal stiffener, ho/tw 96 satisfies the maximum 140.3the strength ratio of flat stiffener is 0.42 and the maximum is 1the strength ratio of flat stiff

27、ener is 0.09 and the maximum is 1the flange stiffener has a stable strength ratio of 0.25 and a maximum 1 satisfactionthe stress intensity of the end face of the protrusion is 0.24 than the maximum, and the 1 is satisfiedthe maximum strength of the rib stiffener is 1 higher than that of the 0.15the

28、width of rib stiffener (mm) is 60 and the minimum 59.2 satisfiestransverse stiffener thickness (mm) 6 minimum 4 meetsflat stiffener, weld height (mm) 7, minimum 6 meetflat stiffener, weld foot height (mm) 7, maximum 7 satisfactionthe width of the rib stiffener extends (mm) 107, the minimum 7 meetsfl

29、ange stiffener thickness (mm) 8, minimum 7.1 meetflange stiffener, weld height (mm) 7, minimum 6 meetflange stiffener, weld height (mm) 7, maximum 7 satisfactionthree. calculation of sectional internal force of crane beam:1 calculation of maximum shear force at the support of the crane beam (paramet

30、er vd):vertical additional live load action, lower end shear, vda=0, knthe maximum wheel pressure standard value after considering the dynamic coefficient of the crane:p=1.05 * 45=47.25 kncalculation of lower end shearing force of crane under vertical load:vdc=1.4 x 1.04 x (47.25 x (2 * 7500-3000) /

31、7500+47.25 * (2*7500-3500-6500) /7500) =169.697 knmaximum shear value at the end: vd=169.697 kncalculation of maximum vertical bending moment mvm in 2 spans (ref):mid span bending moment mva=0 kn*m under vertical additional live loadstandard values of vertical force of single wheel after considering

32、 dynamic coefficients of crane:p=1.05 * 45=47.25 kncrane load resultant force: f=47.25 * 2+47.25 * 2=189 knreaction force of left support: r=189 * 3625/7500=91.35 knmvc calculation of midspan bending moment of crane beam:mvc=1.4 x 1.04 x (91.35 * 3625-47.25 * 3000 * 10-3=275.757 kn*m)calculation of

33、maximum bending moment in midspan: mvm=275.757 kn*mvm calculation of the maximum vertical bending moment corresponding to 3 spans (ref):vertical additional live load action, lower end shear, vma=0, knstandard values of vertical force of single wheel after considering dynamic coefficients of crane:p=

34、1.05 * 45=47.25 kncrane load resultant force: f=47.25 * 2+47.25 * 2=189 knreaction force of left support: r=189 * 3625/7500=91.35 kncalculation of the left shear force at the maximum bending moment:vml=1.4 x 1.04 x (91.35-47.25 * 1) =64.21 kncalculation of right shear force at maximum bending moment

35、:vmr=vml-1.4 x 1.04 x 47.25=-4.586 knthe calculated value of the maximum bending moment corresponding to midspan: vm=64.21 kn4 calculation of maximum horizontal bending moment of midspan of crane beam (mhm):midspan bending moment mha=0 kn*m under horizontal additional live loadconsidering the coeffi

36、cient of braking force and the standard value of lateral force of single wheel after lifting:p=0.12 * (5+2.126) /2 * g/2=2.095 kncrane load resultant force: f=2.095 * 2+2.095 * 2=8.38 knreaction force of left support: r=8.38 * 3625/7500=4.05 knmhc calculation of midspan bending moment of crane beam:

37、mhc=1.4 x (4.05 * 3625-2.095 * 3000 * 10-3=11.757 kn*m)calculation of maximum horizontal bending moment in midspan: mhm=11.757 kn*mcalculation of the maximum vertical bending moment standard value of 5 spans mvk:mid span bending moment mvka=0 kn*m under vertical additional live loadstandard value of

38、 maximum wheel pressure for single wheel crane:p=1.0 * 45=45 kncrane load resultant force: f=45 * 2=90 kn3388 = 1, meet6 calculation of overall stability of crane beamaxis symmetric section: b=0calculation of beta b of simply supported cross section simple beam:unsupported length of compressed flang

39、e: l1=7500mmwidth of compressed flange: b1=260mmthickness of compressed flange: t1=tf=12mmzeta = (l1*t1) / (b1*h) = (7500 x 12) / (260 * 600) =0.5769there is no lateral support across the center and concentrated loads on the upper flangezeta beta b=0.73+0.18 * 0.5769=0.8338 <=2.0.b= b* (phi beta

40、lambda 4320/ y2) * (a*h/wx) *1+ (2 y*t1) 2/ (4.4*h) 20.5+ b* (235/fy)=0.8338 * (4320/124.5432) * (9696 * 600/2116623.36) *1+ (124.543 * 12) 2/ (4.4 * 600) 20.5+0 * (235/345)=0.4996the fatigue strength is not checked, and the plastic development coefficient of the cross section is taken as follows: y

41、=1.2overall stability strength ratio:zeta = (mvm/wx/ gamma phi b+mhm/ y/wy /f)= (275.757/2116.623/0.4996 * 103+11.757/1.2/270.48) * 103/310=0.958 = 1, meetsix. calculation of deformation of crane beam:1 calculation of vertical deflectionlimit of vertical deflection: delta=l/1000=7.5, mmcalculation o

42、f vertical deflection of crane beam by variable section variable beamdelta =mvk*l2/e/ix/10* (1+0.12* (1-id/ix)=112.32 x 106 * 75002/206000/63498.701 * 104/10x * (1+0.12 x (1-63498.701 x 104/63498.701 * 104)=4.83 mm = 7.5, meetcalculation of 2 horizontal deflectionin accordance with appendix a.1.2 of

43、 the steel gauge, it is not necessary to check the horizontal deformation of the crane beam and its braking structure!seven. flange and web connections, weld checks1 checking calculation of upper flange and web connection weld:the upper flange and the web adopt t shape butt joint and fillet joint we

44、lding seam, and the strength meets the requirement2 check the weld between the flange and the web:maximum shear calculation at the end of beam:lower flange weld height: he=0.7*hfd=4.2 mmlower flange weld strengthzeta = (vd*sdd/id) *0.5/he/fw= (169.697 * 917.28/63498.701) *0.5/4.2 * 102/200=0.1459 =

45、1, meeteight. calculation of local stability of crane beam web:1 crane girder stiffener layout diagram (see figure ix):the local stability of the web of the crane beam is controlled by zone vthe web plate is only provided with transverse stiffeners2, crane beam stability calculation, internal force

46、influence line output:when the unit force acts on x, the average shear force from xl to xr is:when x<=xl: vmean=-x/lwhen xl<x<xr: vmean= (l-xl-xr) *x-l*xl) /l/ (xr-xl)when x>=xr: vmean=1-x/lwhen the unit force acts at x, the average bending moment from xl to xr is:when x<=xl: mmean=0.

47、5*x* (2*l-xl-xr) /lwhen xl<x<xr is: mmean=0.5* (l-x) * (x2-xl2), +x* (2*l-x-xr) * (xr-x), /l/ (xr-xl)when x>=xr: mmean=0.5* (l-x) * (xl+xr) /l3 calculation of internal force for stability checking of box 5 in crane girder:check left coordinates: xl=2991 mmright end coordinate: xr=3741 mmwhe

48、n the crane considers the dynamic coefficient, the maximum wheel pressure standard value:p=45 * 1.05=47.25 kna crane is light, intermediate duty crane beam, in accordance with the "regulation" of steel 4.3.1 reduction coefficient: '=0.9 psicalculation of maximum concentrated force desi

49、gn value in crane beam area:the crane wheel pressure p1 and p act within vf1=1.4 x 47.25 x 0.9=59.535 knf=1.4 x 47.25 x 0.9=59.535 kntake the maximum concentration design value: f=max (f1, f) =61.916 kncalculation of average shear design value of box girder in crane beam area:vmean=1.4 x 1.04 * (-47

50、.25 * 241/7482) +47.25 x 7482+2991+3741 * 3241-7482 * 2991/7482/ (3741-2991) +)47.25 x (7482-3741) /7482+47.25 x (7482-6741) /7482 * 10-3=32.127 kncalculation of average bending moment design of box girder in box girder:mmean=1.4 * 1.04 * 47.25 x 241 x (2 * 7482-2991-3741) /7482 * 0.5+47.25 x (7482-

51、3241) x (3241 x 3241-2991 x 2991)+3241 x (2 * 7482-3241-3741) x (3741-3241)/7482/ (3741-2991) +47.25 x (7482-3741) x (2991+3741) /7482 * 0.5+47.25 x (7482-6741) x (2991+3741) /7482 * 0.5 * 10-6=267.631 kn*m4 local stability checking of box girder in box girderthe transverse stiffener spacing of the

52、box girder in the web area of the crane beam is a=750 mmcalculation height of v web: h0=h-tf1-tf2=576 mmheight of neutral axis of section v: cy v =300 mmthe relation moment of section v to x axis: ix v =63498.701 cmthe calculated height of the web is from the edge to the neutral axis: hc v. =h-tf1-c

53、y v. =288 mmcalculation of web height and edge stress of box web:sigma =mmean*hc/ix v =267.631 * 288/63498.701 * 102=126.442 n/mm2=vmean/h0/tw=32.127/576/6 * 103=9.296 n/mm2sigma c=f/lz/tw=59.535/338/6 x 103=29.357 n/mm2calculation of critical stress under the action of normal stress:height of web z

54、one v compression zone: hc=h-cy-tf1=288 mmlambda b=2*hc/tw/177/cf=2 * 288/6/177/0.8253=0.6572a b of 0.85 or less, from sigma cr=fw=310 n/mm2calculation of critical stress under the action of shear stress:a/h0=1.302>1.0, takelambda s=h0/tw/41 (5.34+4/ (a/h0) 2) 0.5/cf=576/6/41/ (5.34+4/1.3022) 0.5

55、/0.8253=1.0220.8 = lambda s = 1.2, the tau cr= (1-0.59* (lambda s-0.8) *fv=156.377 n/mm2calculation of critical stress under the action of local compressive stress:a/h0=1.302 1.5, fromlambda c=h0/tw/28 (10.9+13.4* (1.83-a/h0) 3) 0.5/cf=576/6/28/ (10.9+13.4/ (1.83-1.302) 3) 0.5/0.8253=1.1580.9 = lambda c = 1.2, the cr= (o c, 1-0.79* (2 c-0.9) *fw=246.838

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论