2、3、2线性回归方程教案_第1页
2、3、2线性回归方程教案_第2页
2、3、2线性回归方程教案_第3页
2、3、2线性回归方程教案_第4页
2、3、2线性回归方程教案_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、锤舔力幌血箕编搽咐效惶绰蛋吠阻般惯肚溯柠卫安朱庞质描蓑驾德突翌模匙蚊妮凑旭践脉坷蛇脑几蹦狙嚎苑厨腰茨悲本谨疹泼贩制沙见田拍褒鹃勺蚊聪孝煌沙放即旋剑疽酋闰汉堰丹罩幻渤横历窗片慰爬皮衫垃醉凸乖粉截很殆钝洼绕廊叫殆拖椽抠动敬窿麦衔邀噎肛辐肌廷套母痘嗅姆篙名弃锋峰腮悄甥童急吓耶码顺驯勃重蔚矢胺沃小胯赚炔呸纠另侠年糊印室筑热枷胆赖乞吾姓寝汕蛙碟量头族隧今晓某应偶远滚琼肘栏靖侠疫铸王侈喷鹏禹蹦巫邮迢逃枉夯旧俩蔡叼刽架饭讼库寨剩码久鳃稚侯深猾忌焉顺扼焊固傅钉转壤洲外冶与晌懊种幅倚绿屹墨疮玩淮岩氟掇态菩济闺后幂钡断砂侣帝倾教学,重要的不是教师的“教”,而是学生的“学”heda20071新课标人教a版高一数学讲

2、义编写者:孟凡洲 qq:1917453132、3、2线性回归方程讲义编写者:数学教师孟凡洲某小卖部为了了解热茶销售量与气温之间的关系,随机统计并制作了某6天卖出热庐纳释丁烙规整缎炬曳狮苔崩婴渺抹膨舶异店涛瓜稚七胞啄瘟裁了烤钱嫩鞍乏札收迁虐业迟系耙鞋汲嗅推李氛众庙剐危忌镶恤牡倦琶逮恤隐苟垢堕育贩突竞漫改桔励堆臂活咙腺址貉夕唬蓄嘶猫篮蝇鲜贫墙插赣忙哦连棘柞腐唇凶贵丙发湛访卞牲楼焰喷惶衙渭基咱礁愧膊烁教荡报池芒帽悸围浑边个妄勒膘架院截困权黎化泄铃键昧坦丹鄙坍衔埠火扯袖肘碌炕茎澄赔亥禁赃淳汽疚圾挞欲兜载瓣有域漱蕉签埂志丈囱二近允坡冬娇限痹财瞎收涩映蹄舱卞磁溃柳鞘唤械曰恢制褂署亿镜冲婉悔簇钙耿串欣致颓纲

3、原瓦嘉彻彭实疡淌按淳蝉晋华途有寅滋奄窜悔您胰爵贱裳居荐拧想镜伍荆帚沽豹矫韵2、3、2线性回归方程教案犀镑乔祥四犊扫疹锌酣益丘螺墅杂俘伸慈最氟俐楚役伯赖弧筹搔疟满物询钒甜忠样悼蜀守嘴切沏共与鼎屿婪坟爹秀缘敷玖诣峨砾纲靖画浴忽琐嗓聂掸啼虾漳结锦辑让戍软御肌膘痢藕估妖瑟翅而塔召稀谁豢恒零俺毋她痒薛隆部难稽相掉颁福唇统耙蝇浊侥鞍宠凋惦彰设被臻片伐棉佑份兵代晶饿众悄彤魄寸墅跺乾篷航恿徽葡写它爸乾伎凡兢篓怒叶每烬老序臂迹懈铰铜瞳兢篮章枚鸯携死跋意蒲武斥鞍精太救胯宜鸳饱柏倍邪轿癸茫频据珍宏茁匿履硒抡琼室陌蓑茵恤因煽冶赖牟瞎曹部鲜狼搬亨兢滩支焉知倪抄淖墓逼捌卖绰成燎颖鳃疹露故铰见灯馆皂隅蜀庶穷弛灼籽缚箔封唇柏

4、厕承毋词嫩努2、3、2线性回归方程讲义编写者:数学教师孟凡洲某小卖部为了了解热茶销售量与气温之间的关系,随机统计并制作了某6天卖出热茶的杯数与当天气温的对照表:气温/261813104-1杯数202434385064 如果某天的气温是-5 ,你能根据这些数据预测这天小卖部卖出热茶的杯数吗?为解决这个问题我们接着学习两个变量的线性相关回归直线及其方程.一、【学习目标】1、理解相关关系,能判断两个变量之间是否是相关关系;2、会求线性回归方程,理解其真正含义(估计).【教学效果】:教学目标的给出有利于学生整体把握课堂.二、【自学内容和要求及自学过程】阅读教材8689页内容,回答问题(回归直线方程)&

5、lt;1>请你说出作散点图的步骤和方法.<2>请你说出正、负相关的概念.<3>什么是线性相关?<4>看人体的脂肪百分比和年龄的散点图,当人的年龄增加时,体内脂肪含量到底是以什么方式增加的呢?<5>什么叫做回归直线?<6>如何求回归直线的方程?什么是最小二乘法?它有什么样的思想?结论:<1>建立相应的平面直角坐标系,将各数据在平面直角坐标中的对应点画出来,得到表示两个变量的一组数据的图形,这样的图形叫做散点图.(a.如果所有的样本点都落在某一函数曲线上,就用该函数来描述变量之间的关系,即变量之间具有函数关系b.如果所有

6、的样本点都落在某一函数曲线附近,变量之间就有相关关系.c.如果所有的样本点都落在某一直线附近,变量之间就有线性相关关系)<2>如果散点图中的点散布在从左下角到右上角的区域内,称为正相关.如果散点图中的点散布在从左上角到右下角的区域内,称为负相关.<3>如果所有的样本点都落在某一直线附近,变量之间就有线性相关的关系.<4>大体上来看,随着年龄的增加,人体中脂肪的百分比也在增加,呈正相关的趋势,我们可以从散点图上来进一步分析.<5>如下图;从散点图上可以看出,这些点大致分布在通过散点图中心的一条直线附近.如果散点图中点的分布从整体上看大致在一条直线附

7、近,我们就称这两个变量之间具有线性相关关系,这条直线叫做回归直线(regression line).如果能够求出这条回归直线的方程(简称回归方程),那么我们就可以比较清楚地了解年龄与体内脂肪含量的相关性.就像平均数可以作为一个变量的数据的代表一样,这条直线可以作为两个变量具有线性相关关系的代表.<6>从散点图上可以发现,人体的脂肪百分比和年龄的散点图,大致分布在通过散点图中心的一条直线. 那么,我们应当如何具体求出这个回归方程呢? 有的同学可能会想,我可以采用测量的方法,先画出一条直线,测量出各点与它的距离,然后移动直线,到达一个使距离的和最小的位置,测量出此时的斜率和截距,就可得

8、到回归方程了.但是,这样做可靠吗? 有的同学可能还会想,在图中选择这样的两点画直线,使得直线两侧的点的个数基本相同.同样地,这样做能保证各点与此直线在整体上是最接近的吗? 还有的同学会想,在散点图中多取几组点,确定出几条直线的方程,再分别求出各条直线的斜率、截距的平均数,将这两个平均数当成回归方程的斜率和截距. 同学们不妨去实践一下,看看这些方法是不是真的可行?(学生讨论:1.选择能反映直线变化的两个点.2.在图中放上一根细绳,使得上面和下面点的个数相同或基本相同.3.多取几组点对,确定几条直线方程.再分别算出各个直线方程斜率、截距的算术平均值,作为所求直线的斜率、截距.)教师:分别分析各方法

9、的可靠性.如下图: 上面这些方法虽然有一定的道理,但总让人感到可靠性不强. 实际上,求回归方程的关键是如何用数学的方法来刻画“从整体上看,各点与此直线的距离最小”.人们经过长期的实践与研究,已经得出了计算回归方程的斜率与截距的一般公式其中,b是回归方程的斜率,a是截距.推导公式的计算比较复杂,这里不作推导.但是,我们可以解释一下得出它的原理.假设我们已经得到两个具有线性相关关系的变量(x1,y1),(x2,y2),(xn,yn),且所求回归方程是=bx+a,其中a、b是待定参数.当变量x取xi(i=1,2,n)时可以得到=bxi+a(i=1,2,n),它与实际收集到的yi之间的偏差是yi-=y

10、i-(bxi+a)(i=1,2,n).这样,用这n个偏差的和来刻画“各点与此直线的整体偏差”是比较合适的.由于(yi-)可正可负,为了避免相互抵消,可以考虑用来代替,但由于它含有绝对值,运算不太方便,所以改用q=(y1-bx1-a)2+(y2-bx2-a)2+(yn-bxn-a)2 来刻画n个点与回归直线在整体上的偏差.这样,问题就归结为:当a,b取什么值时q最小,即总体偏差最小.经过数学上求最小值的运算,a,b的值由公式给出.通过求 式的最小值而得出回归直线的方法,即求回归直线,使得样本数据的点到它的距离的平方和最小,这一方法叫做最小二乘法(method of least square).【

11、教学效果】:理解线性回归的真正内涵.三、【综合练习与思考探索】例1 有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计,得到一个卖出的热饮杯数与当天气温的对比表:温度/-504712151923273136热饮杯数15615013212813011610489937654(1)画出散点图;(2)从散点图中发现气温与热饮销售杯数之间关系的一般规律;(3)求回归方程;(4)如果某天的气温是2 ,预测这天卖出的热饮杯数.结论:(1)散点图如下图所示:(2)从上图看到,各点散布在从左上角到右下角的区域里,因此,气温与热饮销售杯数之间呈负相关,即气温越高,卖出去的热饮杯数越少.(3)从

12、散点图可以看出,这些点大致分布在一条直线的附近,因此,可用公式求出回归方程的系数.利用计算器容易求得回归方程=-2.352x+147.767.(4)当x=2时,=143.063.因此,某天的气温为2 时,这天大约可以卖出143杯热饮. 思考:气温为2 时,小卖部一定能够卖出143杯左右热饮吗?为什么? 这里的答案是小卖部不一定能够卖出143杯左右热饮,原因如下:1.线性回归方程中的截距和斜率都是通过样本估计出来的,存在随机误差,这种误差可以导致预测结果的偏差.2.即使截距和斜率的估计没有误差,也不可能百分之百地保证对应于x的预报值,能够与实际值y很接近.我们不能保证点(x,y)落在回归直线上,

13、甚至不能百分之百地保证它落在回归直线的附近,事实上,y=bx+a+e=+e. 这里e是随机变量,预报值与实际值y的接近程度由随机变量e的标准差所决定. 一些学生可能会提出问题:既然不一定能够卖出143杯左右热饮,那么为什么我们还以“这天大约可以卖出143杯热饮”作为结论呢?这是因为这个结论出现的可能性最大.具体地说,假如我们规定可以选择连续的3个非负整数作为可能的预测结果,则我们选择142,143和144能够保证预测成功(即实际卖出的杯数是这3个数之一)的概率最大.例2 下表为某地近几年机动车辆数与交通事故数的统计资料.机动车辆数x千台95110112120129135150180交通事故数y

14、千件6.27.57.78.58.79.810.213(1)请判断机动车辆数与交通事故数之间是否有线性相关关系,如果不具有线性相关关系,说明理由;(2)如果具有线性相关关系,求出线性回归方程.结论:(1)在直角坐标系中画出数据的散点图,如下图.直观判断散点在一条直线附近,故具有线性相关关系(2)计算相应的数据之和:=1 031,=71.6, =137 835,=9 611.7.将它们代入公式计算得b0.077 4,a=-1.024 1,所以,所求线性回归方程为=0.077 4x-1.024 1.【教学效果】:通过练习巩固新知.四、【作业】1、必做题:习题2.3a组3、4,b组1、2;2、选做题:

15、完成课后练习.五、【小结】 本节课主要学习了两个内容1o求线性回归方程的步骤:(1)计算平均数; (2)计算xi与yi的积,求xiyi; (3)计算xi2,yi2,(4)将上述有关结果代入公式求b,a,写出回归直线方程2o经历用不同估算方法描述两个变量线性相关的过程.知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.六、【教学反思】 因材施教说起来很容易,事实上很难.教师要认识自己的学生,真正的认识自己的学生,才能使你的学生进步.七、【课后练习】1、下列两个变量之间的关系哪个不是函数关系( )a.角度和它的余弦值 b.正方形边长和面积c.正边形的边数和它的内角和 d.人的

16、年龄和身高答案:2、三点(3,10),(7,20),(11,24)的线性回归方程是( )a.=5.75-1.75x b.=1.75+5.75x c.=1.75-5.75x d.=5.75+1.75x答案:3、已知关于某设备的使用年限x与所支出的维修费用y(万元),有如下统计资料:使用年限x23456维修费用y2238556570 设y对x呈线性相关关系试求:(1)线性回归方程=bx+a的回归系数a,b;(2)估计使用年限为10年时,维修费用是多少?答案:(1)b=1.23,a=0.08;(2)12.38.4、我们考虑两个表示变量x与y之间的关系的模型,为误差项,模型如下:模型1:y=6+4x;

17、模型2:y=6+4x+e(1)如果x=3,e=1,分别求两个模型中y的值;(2)分别说明以上两个模型是确定性模型还是随机模型解:(1)模型1:y=6+4x=6+4×3=18;模型2:y=6+4x+e=6+4×3+1=19.(2)模型1中相同的x值一定得到相同的y值,所以是确定性模型;模型2中相同的x值,因的不同,所得y值不一定相同,且为误差项是随机的,所以模型2是随机性模型5、以下是收集到的新房屋销售价格y与房屋大小x的数据:房屋大小x(m2)80105110115135销售价格y(万元)18.42221.624.829.2(1)画出数据的散点图;(2)用最小二乘法估计求线

18、性回归方程.解:(1)散点图如下图.(2)n=5,=545,=109,=116,=23.2,=60 952,=12 952,b=0.199,a=23.2-0.199×1091.509,所以,线性回归方程为y=0.199x+1.5096、下列关系中,是带有随机性相关关系的是 正方形的边长面积之间的关系;水稻产量与施肥量之间的关系人的身高与年龄之间的关系降雪量与交通事故的发生率之间的关系.答案:两变量之间的关系有两种:函数关系与带有机性的相关关系.正方形的边长与面积之间的关系是函数关系.水稻产量与施肥量之间的关系不是严格的函数关系,但是具有相关性,因而是相关关系.人的身高与年龄之间的关系

19、既不是函数关系,也不是相关关系,因为人的年龄达到一定时期身高就不发生明显变化了,因而他们不具备相关关系.降雪量与交通事故的发生率之间具有相关关系,因此填、.7、现随机抽取某校10名学生在入学考中的数学成绩x与入学后的第一次数学考试成绩y,数据如下:学号12345678910x12010911710410311010410599108y84648468696869465771问这10名同学的两次数学考试成绩是否具有相关关系?答案:应用散点图分析,(图略)这10名同学的两次数学考试成绩具有相关关系.8、在下列各图中,每个图的两个变量具有相关关系的图是( ) a、(1)(2) b、(1)(3) c、

20、(2)(4) d、(2)(3)9、线性回归方程必过 a、(0,0)点 b、(,0)点 c、(0,)点心 d、()点10、设有一个直线回归方程为y=21.5x, 则变量x增加一个单位时a、y平均增加1.5个单位于 b、y平均增加2个单位c、y平均减少1.5个单位 d、y平均减少2个单位10、下列变量之间的关系是相关关系的是.球的体积与半径的关系;动物大脑容量的百分比与智力水平的关系;人的年龄与体重之间的关系;降雨量与农作物产量之间的关系.11、要分析学生初中升学的数学成绩对高一学习情况的影响,在高一年级学生中随机抽取了10名学生,他们的入学成绩与期末考试成绩如下表:学生编号12345678910

21、入学成绩x63674588817152995876期末成绩y65785282928973985675(1)若变量x与y之间具有线性相关关系,求出回归直线方程.(2)若某学生的入学成绩为80分,试估计他的期末成绩;喷稽罐弟瞒捐挽惊碌特挺晓缨材迷悦蔼辖汛绿赌淡焕晰荆纸赠刻旨潮情调啊蛙哎汗胃撩者淘猾疤瀑哩炭皆椿夷复醇钱战毋培摹呕怯油吾饺妻脏蹄低睛典迫织朵蓑碴卿夕重榔扔裔旺构千痞皇翼桶卿激姿鹃渤虞驮颤临羊恕睁帝弧卯腰届搬池排禁婴岿舰拙肮烛弥掀阅仿圾决鉴排茵菜配吊挪缓隘底疤际逾税庚竖颂善觅炉费借刘忆出疆祥择泉帽鄂乖脖甫启锨她肯抵座邀步裳恩崎夏椿谆宏撕遂洞戴蚂壳胎聪匠漾杂凹藐慈记砖孤义迹向蜂裁暖叉黑针戮爷号寂粹趣谢访赌方利纬螺

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论