机械能守恒定律章末复习总结PPT课件_第1页
机械能守恒定律章末复习总结PPT课件_第2页
机械能守恒定律章末复习总结PPT课件_第3页
机械能守恒定律章末复习总结PPT课件_第4页
机械能守恒定律章末复习总结PPT课件_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、章末复习总结章末复习总结 v变力做功求解方法有以下几种:v一、代换法v如果力的大小(设为f)不变而方向时刻变化,变力对物体做的功,可等效于在该过程中恒力f由某位置移到另一位置时所做的功,用恒力的功代换变力的功v【例1】一恒力f通过光滑的小滑轮和细绳将一质量为m的物体从水平面上点a拉到点b,已知点a、b处细绳与水平方向夹角分别为、,滑轮距物体上表面的高度为h,求此过程中拉力所做的功图图1 v解析:物体在水平面上移动过程中,拉绳的牵引力f是恒力,但绳拉物体的力是变力(大小为f,方向是变化的,所以是变力)从图1可知,物体从点a运动到点b的过程中,此变力使物体在水平方向移动时所做的功w,等效于恒力f由

2、位置a移到位置b时所做的功wf,即w变wfflabf(l1l2)v二、微元法v如果物体沿圆弧作曲线运动,力沿着物体运动(切线)方向时,力的方向与位移方向同步变化,可把整个过程(圆周)分成无限多微元段,先求力在每个微元段上的“元功”,然后求和(此时s为路程)v【例2】马用大小为f800 n的水平力,拉着碾子沿着半径为r10 m的水平圆形晒场轨道的切线方向,匀速运动一周,求拉力对碾子做的功v解析:马的拉力始终沿圆周的切线方向,故我们把圆周均匀分割成n个微元段(n足够大),每段位移为s,则每一微元段s上都可以认为马的拉力方向不变且与位移s方向一致,因而在每一微元段上拉力做功wfs.所以,马拉碾子一周

3、拉力做功wnwfnsf2r5.02104 j.v答案:5.02104 jv三、图象法v如果力f对位移的关系为线性时,或在fx图中表示力变化的图线与x轴围成图形的“面积”有公式可依时,可画出fx图象,图线与横轴所围成的“面积”在数值上等于功的大小v【例3】锤子打击木桩,如果锤每次以相同的动能打击木桩,而且每次均有80%的能量传给木桩,且木桩所受阻力ff与插入深度x成正比,试求木桩每次打入的深度比若第一次打击使木桩插入了全长的1/3,那么木桩全部插入必须锤击多少次?图图2 v解析:由题知木桩受到的阻力ff为一与位移x成正比的变力,我们可以做如图2所示的ffx图,用图象法求解图中“面积”s1、s2表

4、示第1、2次锤击中,木桩克服阻力做的功,数值上等于锤传给木桩的能量,答案:答案:9次次 v四、用动能定理求解v如果力的大小和方向同时变化,物体受到除该变力以外的其它力的功以及物体动能的变化均能求出时,可用动能定理求出这个变力所做的功v【例4】如图3所示,光滑水平面ab与竖直平面内的半圆形导轨在点b衔接,导轨半径为r.一个质量为m的静止物体在a处压缩弹簧,在弹力的作用下获得某一向右速度,当它经过b点进入导轨瞬间对导轨的压力为其重力的7倍,之后向上运动恰能完成半圆周运动到达c点,求:v(1)弹簧对物体的弹力做的功;v(2)物体从b点至c点阻力做的功图图3 图图4 答案:答案:(1)3mgr(2)0

5、.5mgr v五、功率法v如果物体所受某力为变力,但该力的功率p保持不变,可由wpt求出该变力所做的功v【例5】为了缩短航空母舰上飞机起飞前行驶的距离,通常用发射架将飞机弹出,使飞机获得一定的初速度,然后进入跑道加速起飞在静止的航空母舰上,某飞机采用该方法获得的初速度为v0之后,在水平跑道上以恒定功率p沿直线加速行驶,经过距离l(小于跑道长度)离开航空母舰且恰好达到最大速度vm,设飞机的质量为m,飞机在跑道上加速行驶过程中所受阻力的大小恒定求:飞机的速度由v0增至vm过程所经历的时间以及牵引力所做的功v六、平均力法v如果力的方向不变,力的大小对位移按线性规律变化时,可用力的算术平均值(恒力)代

6、替变力,利用功的定义式w scos求功v【例6】一辆汽车质量为105 kg,从静止开始运动,其阻力为车重的0.05倍其牵引力的大小与车前进的距离变化关系为f103xff,ff是车所受的阻力当车前进100 m时,牵引力做的功是多少?答案:答案:1107 j v七、用机械能守恒定律求解v如果物体只受重力和弹力作用,或只有重力或弹力做功时,满足机械能守恒定律如果求弹力这个变力做的功,可用机械能守恒定律来求解v【例7】如图5所示,质量m2 kg的物体,从光滑斜面的顶端a点以v05 m/s的初速度滑下,在d点与弹簧接触并将弹簧压缩到b点时的速度为零,已知从a到b的竖直高度h5 m,求弹簧的弹力对物体所做的功图图5 答案:答案:125 j v八、用功能原理求解v功能原理是:系统所受的外力和内力(不包括重力和弹力)所做的功的代数和等于系统的机械能的增量,如果这些力中只有一个变力做功,且其它力所做的功及系统的机械能的变化量都比较容易求解时,就可用功能原理求解变力所做的功v【例8】质量为2 kg的均匀链条长为2 m,自然堆放在光滑的水平面上,用力f竖直向上匀速提起此链条,已知提起链条的速度v6 m/s,求该链条全部被提起时拉力f所做的功v解析:链条上提过程中提起部分的重力逐渐增大,链条保持匀速上升,故作用在链条上的拉力是变力,不能直接用功的公式求解根据功能原理,上提过

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论