




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 图论课程论文设计(论文)题目:prim算法在通信网络架设中的应用学 院 名 称 :通信与信息工程学院学 生 姓 名 :专 业 :学 号 :填表时间: 2014年 12月摘要通信网络系统架设属于典型的图论优化问题,针对通信网络系统的特点,抽象问题,简化模型,以通信网络系统架设费用那个最小为优化目标,应用prim算法进行通信网络系统架设模型研究。首先简述了五个城市之间架设通信网络系统问题,然后应用数学建模知识对隐含在该问题中的图论模型进行了抽象研究,进而构造问题的数学模型,最后应用prim算法设计了该通信网络系统架设实现流程及相应代码的编写。程序执行结果表明:准确构建了问题的数学模型及应用pri
2、m算法正确求解了该数学模型;并且权值因子的可变性使得该程序具有较强的通用性,易于在实际中使用。【关键字】:数学建模 无向连通图 最小生成树 prim算法技术l类别引言随着数学科学和计算机技术的发展,数学建模知识在各领域中发挥着重要作用,抽象实际问题、建立正确的数学模型已成为解决实际应用问题的关键1。通过数学建模,就可以对实际问题进行抽象、简化,确定变量和参数,并应用某些“规律”建立起变量、参数间的确定的数学模型;一个理想的数学模型,它应满足两个条件;一是模型的可靠性,即在允许的误差范围内,能正确反映所考虑系统相关特性的内在联系,反映客观实际;二是模型的可解性,即它易于数学处理和计算2。本文主要
3、研究的是架设通信网络系统的费用最小问题,应用数学建模知识,建立相应的数学模型,其中求最小生成树可以通过prim算法和kruskal算法,根据本文所要解决问题的特点,主要采用prim算法3。依据算法的基本思想加入了不同的权值,解决不同情况下网络架设的费用最小问题,并编写了相关程序,该程序具有较强的通用性,易于在实际中使用。一、 相关知识介绍1.树树包含n(n>=0)个节点。当n=0时表示为空树。其定义如下:t=(d,r)其中,d为树中节点的有限集合,关系r满足一下条件:有且仅有一个节点k0属于d,它对于关系r来说没有前趋节点,结点k0称作树的根结点。除根结点k0之外,d中的每个结点仅有一个
4、前趋结点,但可以有过个后继结点。d中可以有多个终端结点。即除根结点无父结点,其余各结点都有一个父结点和n(n>=0)个子结点。2.邻接矩阵图的矩阵表示,本文中只用到了邻接矩阵,故在这只提出邻接矩阵的定义,及其图在邻接矩阵中的表示。设图 a = (v, e)是一个有 n 个顶点的图, 图的邻接矩阵是一个二维数组 a.edgenn,用来存放顶点的信息和边或弧的信息。是表示顶点之间相邻关系的矩阵。设g=(v,e)是一个图,其中v=v1,v2,vn。g的邻接矩阵是一个具有下列性质的n阶方阵:无向图的邻接矩阵是对称的;有向图的邻接矩阵可能是不对称的。无向图的邻接矩阵中第i行第j列表示i结点到j结点
5、的度即权值,可以表示为某一具体应用的数据。也表示i结点是否与j结点连通。3.最小生成树在一给定的无向图g=(v, e)中(u,v) 代表连接顶点u与顶点v的边(即),而 w(u,v)代表此边的权重,若存在t为e的子集(即)且为无循环图,使得的w(t)最小则此t为g的最小生成树。二、提出问题与问题抽象1.提出问题假设在五个城市架设通信网络系统,任意两个城市之间都可直接架设通信网络,最终目标是以最小总费用在五个城市架设通信网络系统。表1为各城市之间的距离,单位为公里。各城市之间架设网络每公里费用为10000元。其中五个城市分别用a、b、c、d、e表示。表1:五城市之间距离关系abcdea01012
6、2122b0211513c01214d017e02.问题的数学抽象因为任意两个城市之间都可直接架设通信网络,并且网络连接无方向性,所以五个城市之间的连接图如图1可以认为是一个无向连通赋权图g(v,e,w),其中,v表示顶点集,e表示边集,w表示各边权值,本问题代表为公里数。这样问题就转化为一个图论问题,变为了一个在无向连通赋权图g中求解一棵最小代价生成树问题,该树满足以下条件: 树中任意两点之间至多只有一条边 树中边数等于树的顶点数减一 树中任意去掉一条边,即得一个不连通图 树中各边权值之和是该连通赋权图中所有可能树中各边权值之和最小的。图1:五城市之间连通图3.建立问题求解模型对连通赋权图g
7、(v,e,w),一般来说,生成树不止一个,因此,最小代价生成树不一定是唯一的。我们的目的是找出一棵关于图g的最小代价生成树。设t(v,e)为g的一棵生成树,其各边加权之和:w(t)=w(ei)称为树t的权,找g中树权值最小的生成树t*,t*为g的最小代价生成树。4.数学模型的算法设计 基于具有五个顶点的无向连通赋权图g的每个生成树刚好具有四条边,所以问题是用某种方法选择四条边使它们形成g的最小生成树。此处用到了prim算法4。4.1构造最小生成树的prim算法假设g(v,e,w)为问题中五城市的连通图,顶点集v(a,b,c,d,e),e为图中所有带权边的集合。设置两个新的集合u和edge,其中
8、集合u用于存放g的最小生成树中的顶点,集合edge存放g的最小生成树中的边。假设构造最小生成树时,从顶点a出发,令集合u的初值为ua,集合edge的初值为空5。prim算法的基本思想:从所有uu,vv-u的边中,选取具有最小权值的边(u,v),将顶点v加入集合u中,将边(u,v)加入集合edge中,如此不断重复,直到u=v时,最小生成树构造完毕,这时集合edge中包含了最小生成树的所有四条边。三、算法具体实现1. prim算法实现步骤假设v是图中顶点的集合,e是图中边的集合,edge为最小生成树的边的集合,则prim算法通过以下步骤可以得到最小生成树:a:初始化:u=u0,edge=。此步骤设
9、立一个只有顶点u0的结点集u和一个空的边集edge作为最小生成树的初始形态。b:在所有uu,vv-u的边(u,v)e中,找一条权最小的边(u0,vi),将此边加进集合edge=(u0,vi)中,并将此边的非u中的顶点vi加入u中,u=u0,vi。c:如果u=v,则算法结束;否则重复步骤2。可以算出当u=v时,步骤2共执行了四次,edge中也增加了四条边,这四条边就是所求出的最小生成树的边。2. 算法编码实现代码的编写主要通过visual studio 2013编辑器来编写,用到的编程语言为c+。具体细节如下:首先定义一个5*5的二维数组来存储邻接矩阵值,数组名为value55;定义一个结构体来
10、存储最小生成树中边的信息,结构体定义如下:typedef struct treeint from;int to;int weight;tree;其中结构体中有三个整形的成员变量,from代表最小生成树中某条边的起点,to代表最小生成树中某条边的终点,weight代表最小生成树中某条边的权重。首先初始化一个结构体数组 tree te5,te5用于存储最小生成树中边的信息。首先假设a为起点,以a为起点,b、c、d、e为终点的边假设为最小权边,将其分别存储在te1,te2,te3,te4。找出te数组中权值最小的边,然后将其与te1交换数据。然后假设最小权边的终点为起点,重新比较各边的权重,跟新te
11、数组中的信息。重复步骤与,直到找出四条最小权边。具体代码如下:void cgraphshow:minitree_prim()for (int i = 0; i < max; i+)for (int j = 0; j < max; j+)valueij = (cctrldlg*)afxgetapp()->m_pmainwnd)->valueij;int i, j, k, m, min, t, w;for (i = 1; i < m_ctrldlg.m_editvalue; i+)tei.from = 0;tei.to = i;tei.weight = value0i
12、;for (j = 1; j < m_ctrldlg.m_editvalue; j+)m = j;min = max_value;for (k = j; k < m_ctrldlg.m_editvalue; k+)if (tek.weight < min)min = tek.weight;m = k;tree temp;temp = tej;tej = tem;tem = temp;k = tej.to;for (i = j + 1; i < m_ctrldlg.m_editvalue; i+)t = tei.to;w = valuekt;if (w < tei.
13、weight)tei.weight = w;tei.from = k;3. 运行结果构建邻接矩阵见图2图2:邻接矩阵图画出五个城市之间连接图,见图3图3:连通图生成最小生成树,见图4图4:最小生成树4结论通过程序求出的仿真图形我们可以求出最小生成树,所以在五座城市之间架设通信线路费用最少为:y=(10+12+13+12)*10000=470000元。四、结论本文综合应用数学建模和图论知识,针对通信网络系统架设的特点及优化目标,建立了问题的数学模型,并应用prim算法求解该数学模型,最后编写相应代码。程序执行结果表明了建立的数学模型的正确性和prim算法解决架设通信网络系统费用最小问题的有效性;同时也证明了该应用程序具有较强的通用性,可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年音乐专业考级考试试卷及答案全解析
- 2025年音乐教育与艺术表达能力测试卷及答案
- 2025年艺术设计专业入学考试卷及答案解析
- 2025年教育管理与领导力硕士入学考核试卷
- 2025年健康管理师考试试题及答案
- 2025年环境保护法专业研究生入学考试试卷及答案
- 2025年护理管理与实践能力测试题及答案
- 2025年公共艺术与文化传播专业综合能力测试题及答案
- 物资装备使用管理制度
- 特价餐饮设备管理制度
- 2024年春季学期外国文学基础#期末综合试卷-国开(XJ)-参考资料
- 农田耕作机械合同模板范文
- 完整版2024年“安全生产月”课件
- 中医儿科常见疾病诊疗指南
- 中外园林漫赏智慧树知到期末考试答案2024年
- (正式版)HGT 4339-2024 机械设备用涂料
- 2024年山东省济南市槐荫区中考一模地理试题
- 多联体筒仓滑模施工技术分享
- 三年级语文下册 西城区期末综合模拟测试卷(人教北京版)
- 钢铁企业检修工程预算定额 说明 解释 规则
- 护理文书书写规和质量管理考核标准(体温单)
评论
0/150
提交评论