调度自动化实验报告_第1页
调度自动化实验报告_第2页
调度自动化实验报告_第3页
调度自动化实验报告_第4页
调度自动化实验报告_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、四川大学电气信息学院 调度自动化实验报告 薛原 1143031270调度自动化实验报告学 院 电气信息学院 专 业 电气工程及其自动化 学生姓名 学 号 年级 2011级 指导教师 周步祥 教务处制表二一四年六月八日目录实验一 电力系统数据采集与实时监控实验 3一、实验目的3二 、原理与说明3三、实验项目与方法6四、实验步骤8五、实验分析12六、实验总结12实验二 电力系统正常运行潮流分布与调整实验13一、实验目的13二、原理与说明题13三、实验内容13四、实验数据整理及结果分析15五、思考题16六、总结16附录:实验截图实验一 电力系统数据采集与实时监控实验一、实验目的1) 掌握组建电网仿真

2、实验系统的方法与步骤。2) 掌握数据采集和实时监控SCADA的作用、基本功能、实现原理和操作方法。3) 掌握表征发电厂和变电站当前运行状态的参数类型和特点、获取方式、表现形式。如母线电压、有功功率、无功功率、电流和开关状态等。4) 掌握厂站终端的结构、特点和主要功能。5) 掌握改变发电厂和变电站当前运行方式的控制命令信息的类型和特点、下发方式。二 、原理与说明电力系统是由许多发电厂、输电线路、变电站、配电线路和各种形式的负荷组成的。电力系统调度中心担负着整个电力网的调度任务,以实现电力系统的安全优质和经济运行的目标。电力系统调度中心必须具有两个功能:第一是与所辖电厂、变电站及上级调度等进行测量

3、读值、状态信息及控制信号的远距离、高可靠性的双向交换,简称为电力系统监控系统,即SCADA(Supervisory Control and Data Acquisition);另一个是本身应具有的协调功能(安全监控及其它调度管理与计划等)。系统结构如图1-1。RTU结构及技术参数参照TQDM-II电力系统综合组态实验系统说明书。TQWR-II微机型RTU具有以下特点:1、标准的编程语言环境;2、极强的环境适应能力,工作温度-4070,环境湿度5%95%RH;3、极强的抗电磁干扰能力;4、丰富的通信接口、支持多种通信方式、通信距离长;5、大容量存储能力;1.通信接口两路RS485通信接口,可分别

4、响应主机召唤(任一时刻仅一个RS485接口响应主机通讯)。两路RS485通信接口都有防雷措施,输入输出之间有光电隔离器件进行隔离,以保证高质量的通讯传输。串口通讯初始默认波特率为9600bps,8位数据位,1位停止位,无校验。2.调度系统“四遥”功能遥信:本终端有48路遥信输入接口,每一路的遥信输入信号都有防雷措施和光电隔离器件进行保护,保证系统的运行稳定。用于采集厂站设备运行状态等无源节点,并按规约传送给调度中心,包括:断路器和隔离刀闸的位置信号、继电保护和自动装置的位置信号、发电机和远动设备的运行状态等。遥测:本终端共有48路电压电流信号输入,用于采集变电所电压、电流、有功功率、无功功率,

5、功率因数等模拟信号。遥控:本终端有32路(对)遥控输出,用于执行调度中心改变设备运行状态的命令,如操作厂站各电压回路的断路器、投切补偿电容和电抗器、发电机组的启停等。为了保证终端遥控的准确性和寿命,本终端的遥控输出均采用松下的继电器。遥调:可以通过32路遥控输出对远程的设备进行远程调试;图1-1系统结构图3.实验装置发电机组控制屏G1变电站低压模拟屏三、实验项目与方法本实验采用2MF无穷大系统,一次接线图如图1-2。利用无穷大系统屏、系统升压屏、机组、机组控制屏、变压器屏、网络屏等构成电网供电系统,利用变电站低压模拟屏、负载屏等构成配电系统。图1-2中,断路器对应顺序为:断路器编号对应位置断路

6、器编号对应位置101无穷大系统屏122变压器T2高压侧103系统升压屏低压侧211网络屏1QF104系统升压屏高压侧212网络屏2QF1101#机组控制屏1QF213网络屏3QF111变压器T1低压侧214网络屏4QF112变压器T1高压侧215网络屏5QF1202#机组控制屏1QF216网络屏6QF121变压器T2低压侧图1-2 实验供电系统一次示意图注意:接线前务必断开所有电源以及无穷大系统出线开关。实验接线参照图1-3,接线步骤如下:A、接线屏上无穷大系统连接至升压变压器入端,升压变压器出端连接网络屏1QF入端,同时将网络屏3QF入端并入1QF入端;B、1QF出端连接至线路L1入端,线路

7、L1出端连接至2QF入端,2QF出端连接至5QF入端,5QF出端连接至线路L2入端,线路L2出端连接至6QF入端;C、6QF出端连接至线路4QF出端,3QF出端连接至L3入端,L3出端连接至4QF入端,4QF出端连接至6QF出端;D、接线屏上机组1连接至变压器T1入端,变压器T1出端连接网络屏5QF入端,同时机组2连接至变压器T2入端,变压器T2出端连接网络屏4QF出端;E、低压屏进线1连接至3QF入端,低压屏进线2连接至6QF出端;低压屏出线1连接至负载1,低压屏出线2连接至负载2;图1-3 实验供电系统一次接线图注意:接线完毕后务必多次检查连线是否正确,特别是相序和高低压不能出错。四、实验

8、步骤1.实验过程断路器216跳闸7断路器216合闸负载1 1QF 合闸负载1 1QF 跳闸2MF升压2MF降压PS增速与减速不能做2.事件记录3.报警信息 五、实验分析1. 远动调度自动化系统结构及功能:答:调度自动化系统,其基本结构包括控制中心主站系统、厂站端(RTU)和信点通道三大部分。根据所完成功能的不同,可以将此系统划分为信息采集和执行子系统、信息传输子系统、信息处理子系统和人机联系子系统。信息采集和执行子系统的基本功能是在各发电厂、变电所采集各种表征电力系统运行状态的实时信息,此外还负责接收和执行上级调度控制中心发出的操作、调下或控制命令。信息传输子系统为信息采集和执行子系统和调度控

9、制中心提供了信息交换的桥梁,其核心是数据通道,它经调制解调器与RTU及主站前置机相连。信息处理子系统是整个调度自动化系统的核心,以电子计算机为主要组成部分。该子系统包含大量的直接面向电网调度、运行人员的计算机应用软件,完成对采集到的信息的各种处理及分析计算,乃至实现对电力设备的自动控制与操作。人机联系子系统将传输到调度控制中心的各类信息进行加工处理,通过各种显示设备、打印设备和其他输出设备,为调度人员提供完整实用的电力系统实时信息。调度人员发出的遥控、遥调指令也通过此系统输入,传送给执行机构。2.分析遥控命令的下达方式,怎样进行遥控闭锁,保证系统运行的安全性? 答:遥控命令分:自动和手动,下达

10、方式选择手动时,屏幕是只显示线路始末端跳闸,需要判断具体故障点;选择自动时,屏幕显示故障周围跳闸,可以更及时地跳开线路,减少停电时间。下达遥控命令时,仅仅依靠软件判断符合防误逻辑后,就直接出口,一般系统运行的安全性不是很高,但如果在遥控回路增加了电气闭锁硬接点,通过和遥控闭锁控制器相结合来解决集中控制中心、子站遥控操作的强制闭锁问题,就可以使系统的运行安全性提高。六、实验总结电网调度自动化系统是用来监控整个电网运行状态的,使调度人员可统观全局,运筹全网,有效地指挥电网安全、稳定和经济运行,是调度现代电网的重要手段。电网调度自动化系统对电力系统的安全经济运行起着不可或缺的作用。随着计算机技术、网

11、络和通信技术、数据库技术等的飞速发展和电力市场的要求以及国际标准的成熟完善,调度自动化系统正在朝着数字化、集成化、网格化、标准化、市场化、智能化的方向发展。电力系统是一个庞大复杂的系统,无论是信息的覆盖面、深度、广度等都是一般系统无法比拟的。电力系统每天都要产生大量的与电力系统运行状态有关的信息,要充分发挥现有设备的能力,必须能及时、准确地掌握这些信息并进行快速的处理与分析。 本次实验通过了解调度自动化系统对电力系统运行状态数据的管理功能及对其进行设计,让我对调度自动化中的数据管理功能有了更深的认识,包括它的组成部分及功能,激发了我对调度自动化课程的学习兴趣。总的来说,本次实验较为成功,基本达

12、到了预期的目的。实验二 电力系统正常运行潮流分布与调整实验一、实验目的1.通过本实验,深入理解潮流分布与调整的相关原理与方法,特别是网络结构、网络特点对潮流分布的影响;超高压电网中线路首端电压幅度差与电压相角差对有功传输与无功传输的影响程度;均一网潮流分布特点;有功功率与系统频率及无功平衡与系统电压的关系等基本概念和原理。2.掌握组建复杂电力系统的方法与步骤。3.掌握电力系统调度自动化结构、功能。二、原理与说明电力系统是由许多发电厂,输电线路和各种形式的负荷组成的,在正常运行过程中,绝大多数时间都处于正常运行状态,此时,发电机发出的有功功率和负荷取用的有功功率以及网络损耗的有功功率之间,应随时

13、保持平衡;系统产生的感性无功功率和负荷取用的感性无功功率以及网络损耗的感性无功功率,也随时保持平衡;系统的频率和各母线电压都在规定范围内,各支路潮流都没有超过发热极限值和运行稳定的极限值。但是由于电力系统负荷随时随地都在发生变化,因此系统的发电出力也应随负荷的变化而变化,母线电压和输电线路的潮流也相应发生变化电力系统调度中心的任务就是要随时掌握电力系统的实时运行情况,合理分配各发电厂和线路的潮流,以实现电力系统的安全优质和经济运行的目标。当系统出现异常情况,要根据当时的实际情况,提出决策和措施,指挥控制系统及时动作进行控制,以保证电力系统安全可靠运行。三、实验内容1.不改变网络结构的潮流分布实

14、验注意:1) 调节过程中,定子电流不应超过额定值4.61A。2) 发电机有功功率不应超过2kW。(1)改变发电机的有功、无功功率对系统潮流分布的影响改变各机组的有功、无功,观察改变前和改变后各机组及系统各断路器上的电压、电流功率等,将数据填入表2-1和表2-2中,并将结果进行比较分析。表2-1 发电机改变输出功率前系统参数G1G2211212213214215216103104P(kW)-0.18-0.140.2730.3090.4440.315-0.0150.0510.027-0.06Q(kVar)-0.07-0.410.3060.3690.4290.4230.1560.1020.06-1.

15、02U(V)376.4366.91011.5974.81011.5957.3974.8957.3403.561011.5cos0.930.320.670.640.7190.600.0950.4470.410.058表2-2 发电机改变输出功率后系统参数G1G2211212213214215216103104P(kW)0.931.060.687-0.7650.774-0.6660.0210.0390.0380.48Q(kVar)-0.31-0.660.7320.6030.960.8370.30.2340.0811.26U(V)379.3368.71024.5993.81024.5971.5993

16、.8971.5404.71024.5cos0.940.840.680.780.620.60.0690.160.420.35(2)投、切负荷对系统潮流分布的影响通过控制低压屏、负载屏上断路器,投/切阻性、感性负荷,观察各参数的变化,并记录于表2-3和表2-4中,对数据进行比较分析。表2-3 投入负荷前系统参数G1G2211212213214215216103104P(kW)0.180.140.2730.3090.4440.3150.0150.0510.0270.6Q(kVar)0.070.410.3060.3690.4290.4230.1560.1020.061.02U(V)376.4366.9

17、1011.5974.81011.5957.3974.8957.3403.561011.5cos0.930.320.660.640.710.590.0950.440.410.50表2-4 投入负荷后系统参数G1G2211212213214215216103104P(kW)1.011.260.9120.770.8370.8340.0540.0660.0120.33Q(kVar)0.230.760.8310.6480.8760.7560.2130.2460.081.53U(V)376.9370.91025.5979.71025.5963.4979.7963.4405.61025.5cos0.970.

18、850.730.760.690.740.240.250.140.21(3)投、切电容器对潮流分布的影响投、切电容器观察各参数的变化,并记录数据于表2-5和表2-6中,对数据进行比较分析。表2-5 投入负荷前系统参数G1G2211212213214215216103104P(kW)0.180.140.2730.3090.4440.3150.0150.0510.0270.6Q(kVar)0.070.410.3060.3690.4290.4230.1560.1020.061.02U(V)376.4366.91011.5974.81011.5957.3974.8957.3403.561011.5cos

19、0.930.320.660.640.710.590.0950.440.410.50表2-6 投入负荷后系统参数G1G2211212213214215216103104P(kW)0.750.950.5790.60.6360.5970.0180.0270.0321.11Q(kVar)0.270.690.7110.5040.8490.7110.1650.2070.0681.2U(V)377.8370.41017.1992.11017.1964992.1964405.461017.1cos0.940.800.630.760.590.640.100.120.420.672.改变网络结构的潮流分布实验改变

20、网络结构不调整负载量,分别退出各线路(注意:各节点之间不能失去电气联系)。观察网络改变前后,各机组参数的变化,并记录数据于表2-7和表2-8中。表2-7 网络改变前系统参数G1G2211212213214215216103104P(kW)0.750.950.5790.60.6360.5970.0180.0270.0321.11Q(kVar)0.270.690.7110.5040.8490.7110.1650.2070.0681.2U(V)377.8370.41017.1992.11017.1964992.1964405.461017.1cos0.940.800.630.760.590.640.

21、100.120.420.67表2-8 网络改变后系统参数G1G2211212213214215216103104P(kW)0.760.90.5070.5340.5940.570.0480.0270.0311.08Q(kVar)0.440.570.6390.480.9090.8670.0480.0420.0691.26U(V)380.8368.31012.1996.61012.1966.1996.6966.1406.61012.1cos0.860.840.620.740.540.540.700.540.400.65四、实验数据整理及结果分析1) 总结组建复杂电力系统的方法与步骤。 电力系统是由许

22、多发电厂,输电线路和各种形式的负荷组成的组建复杂电力系统实质就是首先建立网架结构在进行机组并网的过程需要保证发电机发出的有功功率和负荷取用的有功功率以及网络损耗的有功功率之间,应随时保持平衡;系统产生的感性无功功率和负荷取用的感性无功功率以及网络损耗的感性无功功率,也随时保持平衡;系统的频率和各母线电压都在规定范围内,各支路潮流都没有超过发热极限值和运行稳定的极限值,来调整负荷和发电容量。2) 整理实验数据,分析比较网络结构的变化和地方负荷投、切对潮流分布的影响,并对实验结果进行理论分析。 网络结构变化后将会导致线路电流的变化,进而导致网络潮流的重新分布。地方负荷的投切也会影响网络潮流,当电网

23、受到冲击负荷扰动时,将由原来的平衡状态过渡到新的平衡状态。这一动态过程将使各机组的送出功率、转速等发生变化,从而造成电网的频率和功率的振荡,同时,由于冲击负荷(包括有功和无功冲击负荷)引起的无功变化,使电网电压频繁波动,这在小网运行更为突出。 当冲击负荷出现时,将产生不平衡电流,进而导致线路的功率重新分布。3) 比较各项的实验数据,分析其产生的原因。改变发电机的有功、无功功率对系统潮流分布的影响答:改变发电机的有功、无功后,各节点的电压都有不同程度的升高,机组和路器上的无功也增多,除单机无穷大系统外,其余机组和断路器上的功率因数增大。投、切负荷对系统潮流分布的影响答:投、切阻性负荷后,发电机的功率因数显著增大,各

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论