衍生金融工具第九章思考题答案.docx_第1页
衍生金融工具第九章思考题答案.docx_第2页
衍生金融工具第九章思考题答案.docx_第3页
衍生金融工具第九章思考题答案.docx_第4页
衍生金融工具第九章思考题答案.docx_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第九章思考题答案1. 当投资者预计某种标的资产的市场价格将上升时, 他可以买进该标的资产的看涨期权。日后若市场价格真的上升时,且价格上涨至期权合约的协定价格以上,则该投资者可以执行期权从而获利, 获利的多少将视市场价格上涨的幅度来定。从理论上说, 因市场价格上涨的幅度无限,故期权购买者的获利程度亦将无限。反之,如市场价格不是上升,而是下跌,且跌至协定价格或协定价格以下,也就是说,当投资者预期错误,他可以放弃期权。此时,投资者将受到一定的损失,但这种损失是有限的, 且是已知的。这就是说,当期权购买者放弃执行期权时,它的最大损失就是购买期权时所支付的期权费。看跌期权是期权购买者所拥有的可在未来的某

2、个特定时间以协定价格向期权出售者卖出一定数量的某种金融商品或金融期货合约的权利。投资者之所以买进这种期权, 是因为他预期标的资产的市场价格将下跌。买进看跌期权后, 如果标的资产的市场价格果然下降且跌至协定价格之下,则该投资者可以行使其权利, 以较高的协定价格卖出他所持有的标的资产,从而可以避免市场价格下跌的损失。如果期权购买者并不持有标的资产, 则在标的资产市场价格下跌时, 他可以以较低的市场价格买进标的资产, 而以较高的协定价格卖出标的资产来获利,获利的程度将视标的物市场价格下降的幅度来决定。 反之,在买进看跌期权后,若标的物的市场价格没有下跌,或者反而上涨,则投资者可以放弃期权而损失他所支

3、付的期权费。一般来说,对看跌期权的购买者而言,其潜在的损失是有限的(仅限于他所支付的期权费),而其潜在的利润将是无限的。但事实上,对看跌期权的购买者而言, 即使从纯理论上来讲,其潜在的利润也并不是无限的。之所以如此是因为任何标的资产的市场价格都不能降低到零之下。换言之,即使在极端情况下,各种标的资产也都以零为其市场价格的下限。同时在购买这种看跌期权时,投资者总得支付一定的期权费,而期权费又不可能为一负值, 即使无内在价值的看跌期权也是如此。于是,对看跌期权的购买者而言,其潜在的最大利润也只能限于协定价格与期权费之差。2. 否。对看涨期权的出售者而言, 其最大的利润是他出售期权所得到的期权费,

4、而其最大的损失则随着标的物的市场价格来定。 从理论上讲,这种损失将是无限的。然而在卖出看涨期权时,投资者获利的可能性将大于他遭受损失的可能性。在一般情况下,看涨期权的出售者大幅度遭受损失的概率也非常小, 而获得小幅度利润的概率将非常的大。所以,在现实中,投资者未必在大幅度看跌时才出售看涨期权,而只要在预期的市场价格不会大幅度上升时,他即可卖出看涨期权, 并有较大的获利可能。同时,万一对价格的预期真的有较大的误差,投资者也可以按较高的价格 “买回 ”同样的看涨期权以避免或限制进一步的损失。 从产生亏损的角度来说, 则因卖出看跌期权与买进看跌期权在盈亏方面的对称性,投资者的最大损失便是协定价格与期

5、权费之差。3. 根据惯例,在期权行情表上, 各类期权不同的到期日均以横向排列,而不同的协定价格均以纵向排列。所以在每一大类中,凡是到期日相同而协定价格不同的各种期权,我们称之为一个“垂直系列 ”的期权;凡是到期日不相同而协定价格相同的各种期权,我们称之为一个 “水平系列 ”的期权。在金融期权的价差交易中,如果投资者买进和卖出的是同一垂直系列的期权,则该价差可以称之为“垂直价差 ”;如果投资者买进和卖出的是同一水平系列的期权,则该价差可以称之为“水平价差 ”。4. 所谓牛市看涨期权价差是指投资者在买进一个协定价格较低的看涨期权的同时再卖出一个到期日相同但协定价格较高的看涨期权。 由于随着执行价格

6、的上升, 看涨期权的价格通常会随之下降, 售出的执行价格较高期权的价值总是小于购买执行价格较低期权的价值。 因此,在牛市看涨期权价差交易需要初始投资。 所谓牛市看跌期权价差交易是指投资者买进一个较低协定价格的看跌期权, 而同时又卖出一个较高协定价格的看跌期权。这两个看跌期权的标的物相同,到期日也相同。5. 所谓熊市看涨期权价差是指投资者在买进一个协定价格较高的看涨期权的同时再卖出一个到期日相同但协定价格较低的看涨期权。 这两个期权的标的物和到期日均相同。可见,熊市看涨期权价差交易正好是牛市看涨期权价差交易的反向操作。 所谓熊市看跌期权价差是指投资者在买进一个协定价格较高的看跌期权的同时再卖出一

7、个到期日相同但协定价格较低的看跌期权。 这两个期权的标的物和到期日均相同。可见,熊市看跌期权价差交易正好是牛市看跌期权价差交易的反向操作。投资者之所以做此操作是因为他预测标的物的市场价格将有温和的下跌。通过这种交易,投资者将在市场价格下跌时获利,而在市场价格上涨时受损。当然投资者在熊市看跌期权价差交易中的收益和损失都是有限的。6. 对看涨期权来说, 协定价格较低则期权费较高; 反之,协定价格较高则期权费较低。 所以在牛市看涨期权价差交易中, 投资者付出的期权费必须大于他所收取的期权费, 从而表现出期权费的期初净支出。同时,对看涨期权来说,如市场价格高于协定价格,则期权将被执行,如市场价格等于或

8、低于协定价格,期权将被放弃。因此在牛市看涨期权价差交易中,如市场价格等于或低于较低的协定价格,则因买进的期权和卖出的期权均被放弃, 故投资者在建立这一部位时所发生的期权费净支出将成为他从事这一交易的最大的损失。 相反,若市场价格等于或高于较高的协定价格, 则投资者可获得最大的利润。这是因为若市场价格等于较高的协定价格, 投资者买进的期权被执行,而他卖出的期权不被执行,于是他可以从期权的执行中来获益。 但是当市场价格高于较高的协定价格,投资者虽然可以在执行其买进的期权中获得更多的利润, 但他同时又因执行其卖出的期权而发生相应的亏损。所以,若市场价格在涨至较高协定价格之后继续上涨, 则投资者从这种

9、上涨中所获得的利润将被这一上涨所造成的亏损所抵消。 由此可见, 在牛市看涨期权价差交易中,投资者的最大利润和最大损失都是有限的。7. 蝶式价差的实质是牛市价差和熊市价差的一种组合。从上述多头蝶式价差的实例来看, 我们只需将投资者卖出两个期权的交易行为一拆为二,则上述的多头蝶式价差部位即可以分为如下四个单一部位:第一,买进一个协定价格为92.75 的看涨期权,期权费为0.31(合775 美元);第二,卖出一个协定价格为93.00 的看涨期权,期权费为0.17(合425 美元);第三,卖出一个协定价格为93.00 的看涨期权,期权费为0.17(合425 美元);第四,买进一个协定价格为93.25

10、的看涨期权,期权费为0.08(合200 美元)。在上述四个单一部位中, 第一和第二的组合可以形成一个牛市价差部位,第三和第四的组合可以形成一个熊市价差部位。 但是我们必须看到,这两个价差部位一旦形成一个蝶式价差部位, 则其最大利润和最大损失将不是这两个价差部位之最大利润和最大损失的简单相加。 同时蝶式价差部位的两个盈亏平衡点价格也并不与原来的两个价差部位的盈亏平衡点价格相同。 可见,蝶式价差交易虽然是牛市价差交易和熊市价差交易的一种组合, 但这种组合仍然是一种有机组合, 而不是一种简单的拼凑,正是因为如此,蝶式价差交易才是一种独特的交易策略。第十章思考题答案1.内在价值,又称为内涵价值,是指在

11、履行期权合约时可获得的总利润,当总利润小于零时,内在价值为零。内在价值反映了期权合约中预先约定的协定价格与相关基础资产市场价格之间的关系。其计算公式为:式中 IV-内涵价值S- 标的资产的市价X- 协定价格按照有无内涵价值, 期权可呈现三种状态: 实值期权 (in-the-money , 简称 ITM ) 、虚值期权 (out-of-the-money,简称 OTM) 、平价期权(at-the-money,简称 ATM) 。我们把 SX 的看涨期权称为实值期权, 把 S X 的看涨期权称为虚值期权,把 S=X 的看涨期权称为平价期权。同样,我们把 XS 时的看跌期权称为实值期权,把 X S 的

12、看跌期权称为虚值期权,把X=S 的看跌期权称为平价期权。实值期权的内在价值大于零,而虚值期权和平价期权的内在价值均为零。2.式中: IV-内涵价值S- 标的资产的市价X- 协定价格3. 布莱克 斯科尔斯模型共有七个假设条件:(1)期权的标的物为一有风险的资产,其现行价格为 S。这种资产可以被自由的买卖。( 2)期权是欧式的, 其协定价格为 X ,期权期限为 T(以年表示) 。由于美式期权可以在到期日之前的任意交易日执行, 因此其价格一般要高于同类的欧式期权。较早地执行看涨期权会损失期权的时间价值。执行期权距离到期日越近, 损失的时间价值越小。(3)在期权到期日之前, 标的资产无任何收益 (如股

13、息、 利息等)的支付, 于是,标的资产的价格的变动是连续的,且是均匀的,既无跳空上涨,也无跳空下跌。( 4)存在一个固定的无风险利率, 投资者可以以此利率无限制的借入或贷出资 金。( 5)不存在影响收益的任何外部因素,如税负、交易成本及保证金等。于是,标的物持有者的收益仅来源于价格的变动。( 6)标的物的价格的波动为一已知常数。( 7)标的物价格的变动符合布朗运动。即:ds=Sdt+Sdz其中, ds标物价格的无穷小的变化值dt时间的无穷小的变化值标的资产在每一无穷小的期间内的平均收益率标的资产价格的波动性,也就是标的资产在每一无穷小的期间内的平均收益率的标准差dz均值为 0dt、方差为 1d

14、t 的无穷小的随机变量4.5. Delta(通常以 “”表示 )无疑是期权价格最为重要的敏感性指标, 它表示期权的标的物价格的变动对期权价格的影响程度。换句话说, 是衡量期权对相关工具的价格变动所面临风险程度的指标,因此非常重要。如期权之标的物的价格上升 1 美元,该期权费上升 0.5 美元,则称该期权的 Delta 为 0.5。对于欧式期权来说, 看涨期权和看跌期权的Delta的绝对值之和等于1。一般的说,平价看涨期权的Delta为0.5;平价看跌期权的Delta 为-0.5;实值期权的 Delta,其绝对值将大于0.5 而小于 1;虚值期权的 Delta,其绝对值将小于0.5 而大于 0。

15、在极端情况下,当期权处于极度实值时,其 Delta 的绝对值将趋近于 1;当期权处于极度虚值时, 其 Delta 的绝对值将趋近于 0。换句话说,虚值程度很深的期权的 delta 值很小或为 0,实值程度很深的期权的 delta 值很大或接近于 +1 和-1。这是因为当期权的虚值程度很深时, 相关标的物的价格变动对期权费的影响很小或没有影响。这就是说,市场参与者受相关标的物市场影响不多或面临的风险不显著;当期权的实值程度很深时,相关标的物的价格的任何变动将导致期权费差不多同等幅度的变动, 这将导致所面临的风险与持有相同额度的相关标的物一模一样。观察 Delta 的另一种方式是将其视为期权行将结

16、束时其实值状态的概率衡量尺度。 Delta 的值接近于 +1 或 -1 时,由于它的实值状态很深,最有可能被执行; Delta 的值接近于 0 或等于 0 时,由于它的虚值状态很深,最有可能被放弃。6. 无收益资产的欧式期权。考虑有两种投资组合方式:组合 A:一份欧式看涨期权c 加上金额为的现金组合 B:一份欧式看跌期权p 加上标的股票 ST通过分析我们可以发现,无论ST 与 X 大小关系如何关系,组合A的价值和组合B 的价值都相等,因此有下面的公式:它表明欧式看涨期权的价值可根据相同协议价格和到期日的欧式看跌期权的价值推导出来,反之亦然。第九章计算题答案1. MP=$3,ML =$2,BP=

17、$322. 只要股票价格 P>94,方案 1 就会赢利;而根据( P-95) ×2000-9400=0 可知, P=99.7,所以只有 P>99.7 时,方案 2 才会赢利。(P-94) ×100=(P-95) ×2000-9400,P=100,所以 P=100 时,两个方案的赢利相同。3. 在期权行使日, C 公司同时买进购买和出售两项期权交易,其损益情况如下图所示: a 曲线是组合期权交易损益图,当现时价格高于86.5 日元时,交易结果是赢利的,最大赢利额为1.0( 3.52.5)日元;当现时价格低于 84 日元时,交易结果是亏损,最大亏损额为1.

18、5( 136138.53.52.5)日元;损益分歧点为85.5 日元。 b 曲线是买方卖空期权交易损益曲线,当现时价格高于84 日元时,交易结果为亏损,最大亏损额为2.5 日元(支付的期权费);当现时价格低于 84 日元时,交易结果为赢利,赢利额无限大。 c 曲线为卖方买空期权交易损益线,当现时价格高于86.5 日元时,交易结果为赢利,最大赢利额为3.5 日元(收取期权费);当现时价格低于 86.5 日元时,交易结果为亏损,亏损额无限大。4. P=90-85-(10+2-2*5)=3, ML=2,BP1=87,BP2=935.第十章计算题答案1. C14.98 美元2. 英镑看跌期权的 Delta 值为 0.458,因为英镑现货的 Delta 值为+1,故 100 万英镑现货头寸的Delta 值为 +100 万,为了抵消掉现货头寸的 Delta 值,该公司应买入的看跌期权的数量为100 万 0.458218.34万。3. 如果股价上升到 24 美元,则组合价值为 24 -3;如果下降到 20美元,则价值为 20 。24 -3=20,则=0.75,价值为 15。15 e 0.08*0.08333=14.9,-f+22=14.9,f=1.6(f 为期权价格 )4. 此题中 u=1.10,d=0.9,t=0.5,r=0.08p=( e 0.08*0.5 -0.9

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论