电力电子技术课程设计中频加热电源主电路设计_第1页
电力电子技术课程设计中频加热电源主电路设计_第2页
电力电子技术课程设计中频加热电源主电路设计_第3页
电力电子技术课程设计中频加热电源主电路设计_第4页
电力电子技术课程设计中频加热电源主电路设计_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、-作者xxxx-日期xxxx电力电子技术课程设计中频加热电源主电路设计【精品文档】电力电子技术课程设计题目中频加热电源主电路设计学院专业班级学号学生姓名指导老师【精品文档】目 录1 设计内容和设计要求3 1.1 设计内容 1.2 设计要求2 中频加热电源4 2.1 中频加热电源基本原理 2.2 中频加热电源基本结构3 整流电路的设计6 3.1 整流电路的选择 3.2 三相桥式全控整流电路 3.3 整流电路参数计算4 逆变电路的设计 10 4.1 逆变电路的选择逆变电路参数计算5 保护电路的设计 14 过电压保护 5.2 过电流保护6 设计结果分析 18 6.1 仿真结果 6.2 主电路原理图6

2、.3 结果分析7 设计心得体会 238 参考文献 241 设计内容和设计要求1.1 设计内容 1) 额定中频电源输出功率PH=100kw,极限中频电源输出功率PHM=1.1 PH=110kW;2) 电源额定频率f =1kHz;3) 逆变电路效率h=95%4) 逆变电路功率因数:cosj ,j =30o;5) 整流电路最小控制角amin =15o;6) 无整流变压器,电网线电压UL=380V;7) 电网波动系数A0。 1.2 设计要求 1) 画出中频感应加热电源主电路原理图; 2) 完成整流侧电参数计算; 3) 完成逆变侧电参数计算; 4) 利用仿真软件分析电路的工作过程; 5)编写设计说明书,

3、设计小结。2 中频加热电源 2.1 中频加热电源基本原理感应加热利用导体处于交变的电磁场中产生感应电流,即涡流,所形成的热效应使导体本身发热。根据不同的加热工艺的要求,感应加热采用的电源的频率有工频(50HZ),中频(60-10000HZ),高频(高于10000HZ)。感应加热本身的物体必须是导体,感应加热能在被加热物体内部直接生热,因而热效率高,升温速度快,容易实现整体均匀加热或局部加热。感应加热利用交流电建立交变磁场涡流对金属工件进行感应加热,基本工作原理如图1,A为感应线圈,B为被加热工件,若线圈A中通以交流电流i1,则线圈A内产生随时间变化的磁场,置于交变磁场中的被加热工件B要产生感应

4、电动势e2,形成涡流i2,这些涡流使金属工件发热,因此,感应加热是靠感应线圈把电能传递给要加热的金属工件,然后在金属工件内部转换成热能,感应线圈与被加热工件不直接接触,能量是通过电磁感应传递的。为了将金属工件加热到一定的温度,要求工件中的感应电流尽可能地大,增加感应线圈中的电流,可以增加金属工件中的交变磁通,进而增加工件中的感应电流,现代感应加热设备中,感应线圈中的电流最大可以达到几千甚至上万安培。增加工件中感应电流的另一个有效途径是提高感应线圈中电流的频率,由于工件中的感应电势正比于交变磁通的变化率,感应线圈中电流的频率越高,磁通的变化就越快,感应电势就越大,工件中的感应电流也就越大。对同样

5、的加热效果,频率越高,感应线圈中的电流就可以小一些,这样可以减少线圈中的功率损耗,提高设备的电效率。 2.2 中频加热电源基本结构经过半导体器件的发展,感应加热电源的拓扑结构逐渐固定为一种ACDCAC的变换形式,基本结构如图所示,由整流器,滤波器,逆变器及一些控制和保护电路组成。3 整流电路的设计 3.1 整流电路的选择整流电路是电力电子电路中最早出现的一种,它将交流电变为直流电,应用十分广泛,电路形式各种各样;按组成的器件可分为不可控、半控和全控三种,按电路结构可分为桥式电路和零式电路,按交流输入相数分为单相电路和多相电路,按变压器二次侧电流的方向是单相或双相,又分为半波电路和全波电路;实用

6、电路是上述的组合结构。整流电路的实质就是把交流电能转换为直流电能的电路。1)整流电路的分类当负载容量大,要求直流电压脉动小时,应采用三相整流电路,这里我们采用三相可控整流电路。我们学过的常用的三相可控整流的电路有三相半波、三相半控桥、三相全控桥、双反星形、多重化整流电路等。(1)三相半波可控整理电路结构和控制简单,但输出脉动大,变压器二次侧电流中含直流分量,造成变压器铁芯直流磁化,实际上很少应用此种电路。(2)双反星形结构二次侧为两组匝数相同极性相反的绕阻,分别接成两组三相半波电路,它二次侧两绕组的极性相反可消除铁芯的直流磁化带平衡电抗器能保证两组三相半波整流电路能同时导电。与三相桥式电路相比

7、,双反星形电路的输出电流可大一倍。(3)多重化整流电路是采用相同器件时可达到更大的功率。可减少交流侧输入电流的谐波或提高功率因数,从而减小对供电电网的干扰,其脉动小,能提供的功率大但使用的器件多。(4)三相全控桥整流电压脉动小,脉动频率高,基波频率为300Hz,所以串入的平波电抗器电感量小,动态响应快,系统调整及时,并且三相全控桥电路可以实现有源逆变,把能量回送电网或者采用触发脉冲快速后移至逆变区,使电路瞬间进入有源逆变状态进行过电流保护。2)整流电路的比较三相全控桥式可控整流电路与三相半波电路相比,若要求输出电压相同,则三相桥式整流电路对晶闸管最大正反向电电压的要求降低一半;若输入电压相同,

8、则输出电压比三相半波可控整流是高一倍。而且三相全控桥式可控整流电路在一个周期中变压器绕组不但提高了导电时间,而且也无直流流过,克服了三相半波可控整流电路存在直流磁化和变压器利用率低的缺点。从以上比较中可看到:三相桥是可控整流电路从技术性能和经济性能两方面综合指标考虑比其他可控整流电路有优势,故本次设计确定选择三相桥式可控的整流电路。 3.2 三相桥式全控整流电路在三相桥式全控整流电路中,对共阴极组和共阳极组是同时进行控制的,控制角都是。由于三相桥式整流电路是两组三相半波电路的串联,因此整流电压为三相半波时的两倍。很显然在输出电压相同的情况下,三相桥式晶闸管要求的最大反向电压,可比三相半波线路中

9、的晶闸管低一半。1)三相桥式全控整流电路原理图2)三相桥式全控整流电路特性(1) 三相桥式全控整流电路在任何时刻都必须有两个晶闸管导通,而且这两个晶闸管一个是共阴极组,另一个是共阳极组的,只有它们能同时导通,才能形成导电回路。 (2) 三相桥式全控整流电路就是两组三相半波整流电路的串联,所以与三相半波整流电路一样,对于共阴极组触发脉冲的要求是保证晶闸管VT1、VT3和VT5依次导通,因此它们的触发脉冲之间的相位差应为120°。对于共阳极组触发脉冲的要求是保证晶闸管VT2、VT4和VT6依次导通,因此它们的触发脉冲之间的相位差也是120°。 (3) 由于共阴极的晶闸管是在正半

10、周触发,共阳极组是在负半周触发,因此接在同一相的两个晶闸管的触发脉冲的相位应该相差180°。(4) 三相桥式全控整流电路每隔60°有一个晶闸管要换流,由上一号晶闸管换流到下一号晶闸管触发,触发脉冲的顺序是:1234561,依次下去。相邻两脉冲的相位差是60°。(5) 由于电流断续后,能够使晶闸管再次导通,必须对两组中应导通的一对晶闸管同时有触发脉冲。为了达到这个目的,可以采取两种办法;一种是使每个脉冲的宽度大于60°(必须小于120°),一般取80°100°,称为宽脉冲触发。另一种是在触发某一号晶闸管时,同时给前一号晶闸管补

11、发一个脉冲,使共阴极组和共阳极组的两个应导通的晶闸管上都有触发脉冲,相当于两个窄脉冲等效地代替大于60°的宽脉冲。这种方法称双脉冲触发。 (6) 整流输出的电压,也就是负载上的电压。整流输出的电压应该是两相电压相减后的波形,实际上都属于线电压,波头uab、uac、ubc、uba、uca、ucb均为线电压的一部分,是上述线电压的包络线。相电压的交点与线电压的交点在同一角度位置上,故线电压的交点同样是自然换相点,同时亦可看出,三相桥式全控的整流电压在一个周期内脉动六次,脉动频率为6 × 50=300赫,比三相半波时大一倍。(7) 晶闸管所承受的电压。三相桥式整流电路在任何瞬间仅

12、有二臂的元件导通,其余四臂的元件均承受变化着的反向电压。例如在第(1)段时期,VT1和VT6导通,此时VT3和VT4,承受反向线电压uba=ub-ua。VT2承受反向线电压ubc=ub-uc。VT5承受反向线电压uca=uc-ua。晶闸管所受的反向最大电压即为线电压的峰值。当从零增大的过程中,同样可分析出晶闸管承受的最大正向电压也是线电压的峰值。 3.3 整流电路参数计算1) 整流侧最大输出功率Pdm=×2) 整流侧输出电压UdL cosa×380×cos15°3) 整流侧输出电流Idmax=×4) 整流侧晶闸管额定电压 UTN=(1+10%)

13、×380××5) 整流侧晶闸管额定电流 ITN=2××4 逆变电路的设计 4.1 逆变电路选择1)电压型逆变电路串联谐振逆变器也称电压型逆变器,其原理图如下:串联谐振式电源采用的逆变器是串联谐振逆变器,其负载为串联谐振负载。通常需电压源供电,在感应加热中,电压源通常由整流器加一个大电容构成。由于电容值较大,可以近似认为逆变器输入端电压固定不变。交替开通和关断逆变器上的可控器件就可以在逆变器的输出端获得交变的方波电压,其电压幅值取决于逆变器的输入端电压值,频率取决于器件的开关频率。(1) 串联谐振逆变器的输入电压恒定,输出电流近似正弦波,输出电压

14、为矩形波,换流是在晶闸管上电流过零以后进行,因而电流总是超前电压角。(2) 串联谐振逆变器在换流时,晶闸管是自然关断的,关断前其电流己逐渐减少到零,因而关断时间短,损耗小。在换流时,关断的晶闸管受反压的时间较长。(3) 串联谐振逆变器感应线圈上的电压和补偿电容器上的电压,都为谐振逆变器输出电压的Q倍。当Q值变化时,电压变化比较大,所以对负载的变化适应性差。流过感应线圈上的电流,等于谐振逆变器的输出电流。(4) 串联谐振逆变器的感应加热线圈与逆变电源(包括补偿电容器)的距离较远时,对输出功率的影响较小。2) 电流型逆变电路并联谐振逆变器也称电流型逆变器,其原理图如下并联谐振式电源采用的逆变器是并

15、联谐振逆变器,其负载为并联谐振负载。通常需电流源供电,在感应加热中,电流源通常由整流器加一个大电感构成。由于电感值较大,可以近似认为逆变器输入端电流固定不变。交替开通和关断逆变器上的可控器件就可以在逆变器的输出端获得交变的方波电流,其电流幅值取决于逆变器的输入端电流值,频率取决于器件的开关频率。(1) 并联谐振逆变器的输入电流恒定,输出电压近似正弦波,输出电流为矩形波,换流是在谐振电容器上电压过零以前进行,负载电流也总是越前于电压 角。(2)并联谐振逆变器在换流时,晶闸管是在全电流运行中被强迫关断的,电流被迫降至零以后还需加一段反压时间,因而关断时间较长。相比之下,串联谐振逆变器更适宜于在工作

16、频率较高的感应加热装置中使用。(3)并联谐振逆变器的感应线圈和补偿电容器上的电压,都等于逆变器的输出电压,而流过它们的电流,则都是逆变器输出电流的Q倍。逆变器器件关断时,将承受较高的正向电压,器件的电压参数要求较高。(4)对并联谐振逆变器来说,感应加热线圈应尽量靠近电源(特别是补偿电容器),否则功率输出和效率都会大幅度降低。3)电压和电流型逆变电路比较(1)储能元件:电压型变频器电容器;电流型电抗器。 (2)输出波形的特点:电压形电压波形为矩形波电流波形近似正弦波;电流型变频器则为电流波形为矩形波电压波形为近似正弦波 (3)回路构成上的特点,电压型有反馈二极管直流电源并联大容量电容(低阻抗电压

17、源);电流型无反馈二极管直流电源串联大电感(高阻抗电流源)电动机四象限运转容易。(4)特性上的特点,电压型为负载短路时产生过电流,开环电动机也可能稳定运转;电流型为负载短路时能抑制过电流,电动机运转不稳定需要反馈控制。电流型逆变器采用自然换流的晶闸管作为功率开关,其直流侧电感比较昂贵,而且应用于双馈调速中,在过同步速时需要换流电路,在低转差频率的条件下性能也比较差。 在中频加热电源主电路中,一般选择电压型逆变电路 ,在仿真过程中电压逆变电路输出波形要比电流逆变电路输出波形效果更好一些。 逆变电路参数计算1) 逆变侧直流电压因为整流电路的输出电压为逆变电路的直流电压,所以Ud2) 负载两端基波电

18、压有效值Uo3)负载电流基波有效值 Iod4) 逆变侧晶闸管额定电压:UTN=2×Uo=2××5) 逆变侧晶闸管额定电流:ITN=2× =2×5 保护电路的设计 过电压保护1)过电压产生的原因(1)当负载断开时或快熔断时,储存在变压器中的磁场能量会产生过电压,显然在交流侧阻容吸收保护电路可以抑制这种过电压,但由于变压器过载时储存的能量比空载时要大,还不能完全消除。措施:能常采用压敏吸收进行保护。(2)由于交流侧电路在接通或断开时出现暂态过程,会产生操作过电压。高压合闸的瞬间,由于初次级之间存在分布电容,初级高压经电容耦合到次级,出现瞬时过电压。

19、措施:在三相变压器次级星形中点与地之间并联适当电容,就可以显著减小这种过电压。(3)与整流器并联的其它负载切断时,因电源回路电感产生感应电势的过电压。变压器空载且电源电压过零时,初级拉闸,因变压器激磁电流的突变,在次级感生出很高的瞬时电压,这种电压尖峰值可达工作电压的6倍以上。交流电网遭雷击或电网侵入干扰过电压,即偶发性浪涌电压,都必须加阻容吸收路进行保护。2)过电压保护分类(1)整流侧晶闸管元件过电压保护 晶闸管承受过电压的能力极差,当电路中电压超过其反向击穿电压时,即使时间极短,也容易反向击穿而损坏。如果正向电压超过其额定电压,还可能引起晶闸管误导通。这种误导通次数频繁时,如导通电流较大,

20、也可能使器件特性变坏,甚至损坏。因此,除选用管子时,必须考虑一定的电压安全系数外,还必须采取措施消除晶闸管上可能出现的过电压。 消除过电压现象通常可以采用阻容吸收电路。晶闸管过电压阻容保护电路是利用电容来吸收过电压,其实质是将引起过电压的磁场能量变成电场能量储存在电容器之中,然后电容器通过电阻放电,把能量逐渐消耗在电阻中,这就是过电压保护的基本方法。 晶闸管过电压保护通常采用RC吸收电路,该电路直接并联在器件阳极和阴极之间,既可吸收瞬态电压尖峰,又可抑制电压上升率du/dt。<1> RC吸收电路电容:Cs =(2.55)×10-3×IT(AV)×10-

21、3×ITNµFCs的交流耐压:UcsmTN<2> RC吸收电路电阻:Rs =1030(W) 电阻的功率:PR =fC(Um)2×10-6=1000×××Ud)2×10-6(2)逆变侧晶闸管过电压保护:<1> RC吸收电路电容:Cs=(2.55)×10-3×ITN ×10-3×mF<2> RC吸收电路电阻:Rs=1030(W)电阻的功率:PR =fC(Um)2×10-6=1000××(×Ud)2×10-

22、6 5.2 过电流保护引起过流的原因电力电子电路运行不正常或者发生故障时,可能会发生过电流。1)整流电路过电流保护采用整流电路桥臂串联快速容断器过电流保护。快速容断器的选择原则: (1) 快速熔断器的额定电压应大于线路正常工作电压有效值。 (2) 快速熔断器熔体的额定电流IR是指电流有效值,晶闸管额定电流是指通态电流平均值。选用时要求 IR IRN1.57 IT(AV) 式中:IR快速容断器容体额定电流 IRN快速容断器额定电流 (3)熔断器(安装熔体的外壳)的额定电流应大于或等于熔体额定电流值。3)逆变电路过电流保护 短路保护电路,RP3设定适当的阀值,当采样值低于阀值时,IC2A输出高电平

23、,使IC2B同相端为低,积分电路不工作,IC2C也输出低电平,此时OI由图4-2可知是高电平,PWM信号可通过非门送至驱动器件使逆变电路工作。当负载过载或发生短路时,采样值高于阀值,IC2A输出低电平,V3不导通,电流通过VD1和R5使IC2B同相端为高电平,积分电路开始工作,一定时间后,IC2B输出高电平,IC2C也输出高电平,使继电器KA2动作,主回路退出运行,并点亮故障指示灯VL2。此时OI为低电平,其后原理同短路保护。 积分电路的作用是当过流信号较短时,保护电路并不动作,只有过流信号持续发生时,保护电路才动作。这样可防止误动作,提高了保护电路的可靠性。为了防止积分电路震荡,可在积分电路

24、的电容两端并上一个2M的电阻。6 设计结果分析1)整流电路触发角为15度:2)逆变电路(1)电流型逆变电路输出电压电流波形(2)电压型逆变电路输出电压电流波形6.2 主电路原理图中频感应加热电源是一种将三相工频(50Hz)交流电转变为单相中频交流电的装置。目前应用较多的中频感应加热电源的工作原理是,通过整流电路先将三相交流电整流成可调的直流电,经电抗器滤波后,经过逆变器变换成频率较高的交流电供给负载。中频电源的主电路有若干种,但大部分用的是并联逆变中频电源,原理图如图所示。直流电源由工频交流电源经三相可控整流后得到。在直流侧串有大电感Ld,从而构成电流型逆变电路。单相逆变电桥由四个快速晶闸管桥臂构成,电抗器L1L用来限制晶闸管导通时的didt。VT1、VT4和VT2、VT3以中频(5005000Hz)轮流导通,就可在负载上得到中频交流电。 中频电炉负载是一个感应线圈,图中L和R串联即为其等效电路。因为功率因数很低,故并联补偿电容器C,电容C和L、R构成并联谐振电路。所以这种逆变电路被称为并联谐振式逆变电路。负载换相方式要求负载电流超前于电压,因此补偿电容应使负载过补偿,使负载电路工作在容性小失谐情况下。可以看出,补偿电容C也起到换流电

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论