版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、离散型随机变量的均值与方差【学习目标】1. 理解取有限个值的离散型随机变量的均值或期望的概念,会根据离散型随机变量的分布列求出均值 或期望,并能解决一些实际问题;2. 理解取有限个值的离散型随机变量的方差、标准差的概念,会根据离散型随机变量的分布列求出方 差或标准差,并能解决一些实际问题;【要点梳理】要点一、离散型随机变量的期望1.定义:一般地,若离散型随机变量的概率分布为X1X2XiPP1P2Pi贝U称E = X4 X2P2* XnPn 为'的均值或数学期望,简称期望.要点诠释:(1) 均值(期望)是随机变量的一个重要特征数,它反映或刻画的是随机变量取值的平均水平.(2 ) 一般地,
2、在有限取值离散型随机变量的概率分布中,令p p2 =二pn ,则有1 1Pl二P2二二Pn , E = (X! X2 - Xn),所以的数学期望又称为平均数、均值。nn(3)随机变量的均值与随机变量本身具有相同的单位.2. 性质: EC ) = E : E ; 若 二a:b(a、b是常数),是随机变量,则也是随机变量,有 E( b b ;E(a b) =aE - b的推导过程如下:的分布列为X1X2Xina +bax2 +baX +bPRP2R于是 E、: -(aX1 b) p1(ax2b)p2(aXi b)Pi=a(X1 P1 X2P2Xi Pi )b( pP2Pi)=aE bE(a 匚亠b
3、) = aE :亠 b。要点二:离散型随机变量的方差与标准差1. 一组数据的方差的概念:已知一组数据Xi,X2,Xn ,它们的平均值为 X ,那么各数据与X的差的平方的平均数S2 = 1 (Xi -X)2 + (X2 -X)2 + + (xn -X)2叫做这组数据的方差。n2. 离散型随机变量的方差:一般地,若离散型随机变量'的概率分布为XiX2XipPiP2Pi则称D = (Xi -E )2 Pi + (x E )2 P2 + (Xn - E )2 Pi +称为随机变量 的方差,式中 的E是随机变量 的期望.D 的算术平方根D 叫做随机变量的标准差,记作;.要点诠释:随机变量 的方差
4、的定义与一组数据的方差的定义式是相同的;随机变量的方差、标准差也是随机变量E的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;方差(标准差)越小,随机变量的取值就越稳定(越靠近平均值)标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛。3. 期望和方差的关系:D =E( 2)(E )24. 方差的性质:若 =ab (a> b是常数), 是随机变量,则也是随机变量,D二D(a:亠b)二a2D ;要点三:常见分布的期望与方差1、二点分布:若离散型随机变量服从参数为p的二点分布,则期望E = p方差 D = p(i -P).证明: P( =o)=q,p( =1)= p
5、,0 : p :1, p q =1E =0 q 1 p = pD =(0 一 p)2 q (1 一 p)2 p =p(1 一 p).2、二项分布:若离散型随机变量服从参数为n, p的二项分布,即 B(n, P),则期望E =nP方差 D = np(1- p)期望公式证明: P(二k)=Ckpk(1-p严二C:pkqn± ,n (n -1)! E =0 C:poqn 1 Cn p1qn,2 C:p2qn" . k C:pkqn上 n C: pnq0,又.叱= =nC:;,k!(n k)! (k -1)!(n 1)(k1)!0 0 n 11 1 n _2kJ kJ (nj)_(
6、kj)nJ nJ 0.- E =n p(Cnpq + Cnjp q + + Cnp q+ C:j p q )二 np(p q)nJ 二 np .3、几何分布:独立重复试验中, 若事件A在每一次试验中发生的概率都为p ,事件A第一次发生时所做的试验次数是随机变量,且P二k)二(1-p)kp , k =0,1,23 Hl,n,川,称离散型随机变量服从几何分布,记作: p( =k)二 g(k, P)。若离散型随机变量服从几何分布,且 P( =k)二g(k, P),则期望E = 1 .p方差。匕=字p要点诠释:随机变量是否服从二项分布或者几何分布,要从取值和相应概率两个角度去验证。4、超几何分布:若离
7、散型随机变量 服从参数为N, M , n的超几何分布,则期望E( UnMN要点四:离散型随机变量的期望与方差的求法及应用1求离散型随机变量的期望、方差、标准差的基本步骤: 理解的意义,写出可能取的全部值; 求取各个值的概率,写出分布列;X1X2XiPP1P2Pi 根据分布列,由期望、方差的定义求出E 、D 、;:E =Xi Pi X2P2 山 XnPn 川2 2 2D =XiE PiX2EP2IIIXnEPnIII- = . D .注意:常见分布列的期望和方差,不必写出分布列,直接用公式计算即可.2.离散型随机变量的期望与方差的实际意义及应用 离散型随机变量的期望,反映了随机变量取值的平均水平
8、; 随机变量的方差与标准差都反映了随机变量取值的稳定与波动、集中与离散的程度。方差越大数据波 动越大。 对于两个随机变量1和2,当需要了解他们的平均水平时,可比较 E 1和E 2的大小。 E 1和E 2相等或很接近,当需要进一步了解他们的稳定性或者集中程度时,比较D “和D 2,方差值大时,则表明E比较离散,反之,则表明E比较集中品种的优劣、仪器的好坏、预报的准确与否、武器的性能等很多指标都与这两个特征数(数学期望、方差)有关.【典型例题】类型一、离散型随机变量的期望例1 已知随机变量X的分布列为:X21012P111m1=43520试求:(1) E (X); ( 2)若 y=2X 3,求 E
9、 ( Y) 【思路点拨】 分布列中含有字母 m,应先根据分布列的性质,求出m的值,再利用均值的定义求解;对于(2),可直接套用公式,也可以先写出 Y的分布列,再求 E (Y)【解析】(1) 由随机变量分布列的性质,得1 1 11. 1_ m1 , m =,4352061 111117二 E(X) =(-2) (-1)0124 33620306215(2) 解法一:由公式 E (aX+b) =aE (X) +b,得E(Y) =E(2X 一3) =2E(X) 一3 = 2: i 17 一3二30解法二:由于 Y=2X 3,所以y的分布如下:X75311P11111435620E(Y)=(7)1(-
10、5)1(-3)1(-1)1116243562015【总结升华】求期望的关键是求出分布列,只要随机变量的分布列求出,就可以套用期望的公式求解,对于aX+b型随机变量的期望,可以利用期望的性质求解,当然也可以求出aX+b的分布列,再用定义求解.举一反三:【变式1】已知某射手射击所得环数 的分布列如下:45678910P 0 .02000000.04.06.09.28.29.22求E .【答案】E- -4 Pg -4) 5 P(F: -5) 6 P(F: -6) 7 P(:-7) 8 PC: -8) 9 P(': -9) 10 P(: -10) =4 0.02 5 0.04 6 0.06 7
11、 0.09 8 0.28 9 0.29 10 0.228.32。【变式2】已知随机变量E的分布列为E210123P111112mn126121其中m, n 0,1),且E( E弄一,则m, n的值分别为 由 P1+ P2 + + P6= 1,得 m+ n =,121 11由 E( E=),得一m=,62611/ m= _ , n= _34E024P0.40.30.3【变式3】随机变量E的分布列为:则E(5 E+ 4)等于()A . 13B. 11C. 2.2D . 2.3【答案】A由已知得E(洋 0 >0.4+ 2 >0.3 + 4 >0.3= 1.8,E(5 E+ 4) =
12、 5E( E ) 4= 5>.8 + 4= 13.【变式4】设离散型随机变量的可能取值为1,2,3,4,且PC:二k)二ak b ( k=1,2,3,4 ) , E:-3 ,则 a b =;【答案】0.1 ;由分布列的概率和为1,有(a b) (2a b) (3a b) (4a b 1 ,又 E =3,即 1 (a b) 2 (2a b) 3 (3a b) 4 (4a b) = 3,解得 a = 0.1, b = 0 ,故 a b = 0.1。例2.(2014重庆)一盒中装有9张各写有一个数字的卡片, 其中4张卡片上的数字是1, 3张卡片上的 数字是2, 2张卡片上的数字是3,从盒中任取
13、3张卡片.(I )求所取3张卡片上的数字完全相同的概率;(II )X表示所取3张卡片上的数字的中位数,求 X的分布列与数学期望.(注:若三个数字a, b, c满 足a电宅,则称b为这三个数的中位数.)5 47【答案】(I ) 5(I )8428【思路点拨】不放回的抽取,是古典概型【解析】(I )由古典概型的概率计算公式得所求概率为P= C3+ C3 _ 5C;84(I )由题意知X的所有可能取值为1, 2, 3,且P(X = 1)=c4c5+ c3Cl1742P(X = 2)=c3c4c2+±C34384所以X的分布列为:X123P174311II428412P(X = 3)=c?c
14、7i12,17 c 43 门 147所以 E(X) = 1 一 + 2 + 3;: =一42841228【总结升华】求离散型随机变量均值的关键在于列出概率分布表.举一反三:【变式1】 随机的抛掷一个骰子,求所得骰子的点数E的数学期望.【答案】抛掷骰子所得点数E的概率分布为E123456111111P666666所以111111 1E =1 X + 2X + 3X + 4X + 5X + 6X = (1 + 2+ 3 + 4+ 5+ 6) X_ = 3.5.6 6 6 6 6 6 6抛掷骰子所得点数 E的数学期望,就是 E的所有可能取值的平均值.11【变式2】甲、乙、丙、丁独立地破译一个密码,其
15、中甲的成功率是1,乙、丙、丁的成功率都是1 .2 3(1) 若破译密码成功的人数为 X,求X的概率分布;(2) 求破译密码成功人数的数学期望.【答案】(1)破译密码成功的人数 X的可能取值为0, 1 , 2, 3, 4.P(X =0) h;33854P(X =1) J2+C3T2054P(X=2) = 1玄22C3P(X2厶Ti丄z,333254P(X =4)二卩L丄3 5412则X的概率分布表为X01234P820187丄54545454548 201871(2 )由(1 )知E(X)=0亠 1一亠 2亠 3 亠 45454545454即破译密码成功的人数的数学期望为1.5.81 = 1.5
16、,54【变式31交5元钱,可以参加一次抽奖,已知一袋中有同样大小的球10个,其中有8个标有1元钱,2个标有5元钱,抽奖者只能从中任取 2个球,他所得奖励是所抽 望.【答案1 抽到的2个球上的钱数之和 E是个随机变量,其中 容易获得的,本题的目标是求参加抽奖的人获利的数学期望,E O1 ) =E ( 8 5可获解答.设8为抽到的2球钱数之和,则8 =2(抽到2个1元),E =(抽到所以,由题意得P( =2)= C2G202球的钱数之和.求抽奖者获利的数学期抽到的2个球上的钱数之和E取每一个值时所代表的随机事件的概率是 由E与 的关系为 =E 5,利用公式E的取值如下:1个1元,1个5元),E =
17、10(抽到2个5元).28 口比 6) C8C216P( =6)=45C10巴 p( "0)= C245'C10145,. 28 16 1 18 E ( )=2': : 6 ': : 10 ': 4545455又设 为抽奖者获利的可能值,则=5,所以抽奖者获利的期望为1 87E(戸E ()55 二 1. 455例3. 甲、乙两人各进行 3次射击,甲每次击中目标的概率为1,乙每次击中目标的概率为2,记甲23击中目标的次数为 X,乙击中目标的次数为 Y ,(1 )求X的概率分布;(2 )求X和Y的数学期望.【思路点拨】甲、乙击中目标的次数均服从二项分布.(
18、11解析1( 1)泌1 (1P(X F© 2 hP(X =2)=CfP(X =3)=C; 1。所以X的概率分布如下表:X0123P133188881331(2 )由(1 )知 EgOJ% 楼 J%"5,或由题意 XLB3,1, YLB3,2 。I 2丿I 3丿12二 E(X) =31.5 , E(Y) =32。2 3【总结升华】在确定随机变量服从特殊分布以后,可直接运用公式求其均值.举一反三:【变式1】(2014秋 南岗区校级月考)某篮球队与其他 6支篮球队依次进行 6场比赛,每场均决出胜负,1设这支篮球队与其他篮球队比赛中获胜的事件是独立的,并且获胜的概率均为1。3(1)
19、 求这支篮球队首次获胜前已经负了两场的概率;(2) 求这支篮球队在 6场比赛中恰好获胜 3场的概率;(3) 求这支篮球队在 6场比赛中获胜场数的期望。1 2 14【答案】(1)这支篮球队首次获胜前已经负了两场的概率为p=(1_)23 327(2) 6场比赛中恰好获胜 3场的情况有C;,故概率为 C; (1)3 仆-1)3。181603327 277291(3) 由于X服从二项分布,即 XL B(6,-),31EX =6=23【变式2】一次单元测验由20个选择题构成,每个选择题有4个选项,其中有且仅有一个选项是正确答案,每题选择正确答案得 5分,不作出选择或选错不得分,满分100分,学生甲选对任
20、一题的概率为0.9,学生乙则在测验中对每题都从 4个选择中随机地选择一个,求学生甲和乙在这次英语单元测验中的成绩的期望。【答案】设学生甲和乙在这次英语测验中正确答案的选择题个数分别是,贝 B (20,0.9) , B(20,0.25),.E 20 0.9 =18£:=20 0.25 =5 -由于答对每题得5分,学生甲和乙在这次英语测验中的成绩分别是5和5 所以,他们在测验中的成绩的期望分别是:E(5 ) = 5E( ) = 5 18 =90, E(5 ) =5E( )=5 5 = 25 类型二、离散型随机变量的方差例4 已知离散型随机变量的概率分布为_1123456711111丄1p
21、7777777离散型随机变量 2的概率分布为-23. 73. 83. 944. 14. 24. 3P11111117777777求这两个随机变量期望、均方差与标准差111【解析】E =12 亠 亠7沁. =4 ;7 77D 1 二(1 一4)2 1(2 -4)2 ;(7 一4)2 ; =4 ; c -,;D -2.111E 2 =3.7:一38“434;777D 2=0.04,':-2 =、D 2 =0.2.【总结升华】本题中的1和2都以相等的概率取各个不同的值,但1的取值较为分散,2的取值较为集中.E1二E; =4,D 4,D 0.04,方差比较清楚地指出了比1取值更集中 ;1 =
22、2, 2 =0. 2,可以看出这两个随机变量取值与其期望值的偏差举一反三:【变式1】已知随机变量 E的分布列如下表:E101P111236(1 )求 E ( 8, D ( E), n(2 )设 n =2 E +3求 E ( n, D ( n 1 111 【答案】(1 E()=为 P1 X2P2 X3 P3 = ( -1) ': 一 : 0 : - : 12 363。(©二以E(©)2 P+X2E(©)2 P2+X3E(©)2 卩3=彳,二= £。9 3w 720(2) E( ) =2E( )3=, D( ) =4D()=3 9【变式2】
23、设随机变量X的概率分布为X12nP丄nnn求 D(X ) 0【答案】本题考查方差的求法可由分布列先求出X的期望E (X),再利用方差的定义求之也可直接利用公式 D (X) =E (X2) E (X ) 2来解.解法一:1111E(X) =1 ; 一 叱n (1 2 III n)nnnn_ n(n 1)1 _ n 12 n 2,rn 11cn 11屮n 112nII2n2n2- D(X)二1x_n+ IH十n2)_(n +1)疋(1+2+ n) +n (门+1)n2 1。12n十1解法二:由解法一可求得 E(X)二 。2又 E(X2) =121221|l| n21n nn1222 (n 1)(2
24、 n 1)(12 22 |Hn2):n2 2- D(X) =E(X )-E(X)二(n 1)(2 n 1) (n 1)2n2 -1。12例5.有一批数量很大的商品的次品率为方差。【思路点拨】由于产品数量很大,因而抽样时抽出次品与否对后面的抽样的次品率影响非常小,所以 可以认为各次抽查的结果是彼此独立的,可以看作20次独立重复试验利用二项分布的公式解答。1%,从中任意地连续取出 20件商品,求抽出次品数的期望与【解析】设抽出次品数为,因为被抽商品数量相当大,抽20件商品可以看作20次独立重复试验,所以 B(20,1%),所以 E =np = 20 1% =0.2D 二 np(1 p)=20 1%
25、 (11%) =0.198【总结升华】1. 解答本题的关键是理解清楚:抽20件商品可以看作 20次独立重复试验,即 B(20,1%),从而可用公式:E = np , D = np(1 - p)直接进行计算;2. 以下抽查问题可以看作独立重复试验:(1) 涉及产品数量很大,而且抽查次数又相对较少的产品抽查问题;(2) 如果抽样采用有放回地从小数量产品中抽取产品,则各次抽样的次品率不变,各次抽样是否抽出 次品是完全独立的事件;但从小数量产品中任意抽取产品(即无放回地抽取)每次抽样后次品率将会发生 变化,即各次抽样是不独立的,不能看作独立重复试验。举一反三:【变式】若某批产品共 100件,其中有20
26、件二等品,从中有放回地抽取3件,求取出二等品的件数的期望、方差。【答案】由题知一次取出二等品的概率为0.2,有放回地抽取 3件,可以看作3次独立重复试验,即取出二等品的件数 ' B(3,0.2),所以 E = np = 3 0.2 = 0.6 ,D 二 np(1 - p) =3 0.2 (1 -0.2) =0.48 .【高清课堂:离散型随机变量的均值与方差 408737例题1【变式2】有10件产品,其中3件是次品.从中任取2件,若抽到的次品数为 X,求X的分布列,期望和方差 【答案10件产品中有3件次品,从中任取两件,次品数X可能取值为0Jt2PE傘W舒君W葺诰x的分布列为XQ11p1
27、5715i15X的数学期望是 (X)=0x2+lx2 + 2xl = 2 方差为巩刃二卩-为除?+(1-季乂丄+卩-3)陨2=竺515515515 75类型四、离散型随机变量的期望和方差的应用例6.甲、乙两种水稻在相同条件下各种植100亩,收获的情况如下:甲:亩产量300320330340亩数20254015乙:亩产量310320330340亩数30204010试评价哪种水稻的质量较好.【解析 设甲、乙两种水稻的亩产量分别为X和Y.2511004 '15320 1则 P(X -300), P(X =320)1005402P(X =330), P(X=340) =【思路点拨 本题是期望与
28、方差的综合应用问题要比较甲、乙两种水稻的质量,需求出其平均亩产量 并对其稳定情况进行比较题中只给出了亩产量与亩数关系,所以应先列出甲、乙两种水稻的亩产量的概 率分布,再求其期望与方差.100510020口303201且 P(Y=310), P(Y=320) =10010100540 2101P(Y =330), P(Y=340) =100 5100 101123二 E(X) =300 一 320 - 330 一 340 323,545203 121E(Y)=310: 320330340二 一 323,10 5510即E (X ) =E (Y),这表明两种水稻的平均亩产量相同,进一步求各自的方差
29、,得D(X) = (310_323)2 汉 1 + (320_323)2 疋* + (330_323)| + (340_323) = 171,23212 221D(Y) =(310 - 323):(320 -323)(330 -323)(340 -323)101。105510即V (X )> V (Y),这说明乙种水稻的产量较为稳定,因此乙种水稻质量较好.【总结升华】期望(均值)仅体现了随机变量取值的平均水平但如果两个随机变量的均值相等,还需比较其方差,方差大说明随机变量的取值较分散(波动大),方差小说明取值较集中、稳定.当我们希望实际的平均水平比较理想时,则先求它们的均值,但不要误认为
30、均值相等时,它们都一样 好,这时,还应看它们相对于均值的偏离程度,也就是看哪一个相对稳定(即比较方差的大小),相对稳定者就更好如果我们希望比较稳定时,这时应先考虑方差,再考虑均值是否接近即可.举一反三:【变式1】甲、乙两个野生动物保护区有相同的自然环境,且野生动物的种类和数量也大致相等.而两个 保护区内每个季度发现违反保护条例的事件次数的概率分布分别为甲保护区:X10123P0.30.30.20.2乙保护区:X2012P0.10.50.4试评定这两个保护区的管理水平.【答案】甲保护区的违规次数X1的数学期望和方差分别为:E (X1) =0X0.3+1 >0.3+2 >0.2+3 X
31、).2=1.3 ;2 2 2D (X1) =(0 - 1.3) X0.3+(1 - 1.3) X0.3+(2 - 1.3) X).2+(3 - 1.3)20.2=1.21 乙保护区的违规次数置的数学期望和方差分别为:E (X2) =0X0.1 + 1 >0.5+2 X).4=1.3 ;D (X2)=(0 - 1.3) ».1+(1 - 1.3) X0.5+(2 - 1.3) >0.4=0.41 因为E ( X1) =E (X2), D (X1)> D (X2),所以两个保护区内每季度平均发生的违规事件次数是相 同的,但乙保护区内发生的违规事件次数更集中和稳定,而甲保
32、护区内发生的违规事件次数相对分散,波 动较大.【变式2】 根据气象预报,某地区近期有小洪水的概率为0.25,有大洪水的概率为 0.01,该地区某工地上有一台大型设备,遇到大洪水时要损失60000元,遇到小洪水时要损失10000元为保护设备,有以下3种方案:方案1:运走设备,搬运费为 3800元:方案2:建保护围墙,建设费为2000元,但围墙只能防小洪水;方案3:不采取措施,希望不发生洪水.试比较哪一种方案好.【答案】 要比较哪一种方案好,只要把三种方案的损失的数学期望求出,哪一个小,哪一个方案就好. 用X1、X2、X3分别表示三种方案的损失.采用方案1:无论有无洪水,都损失3800元,即X=3800 .采用方案2:遇到大洪水时,损失 2000+60000=62000 (元);没有大洪水时,损失 2000元,即X26200有大洪水2 0 0(无大洪水60000,有大洪水同样,采用方案3 :有X3 =210000,有小洪水0,无洪水于是, E
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年漳州卫生职业学院单招综合素质考试备考试题附答案详解
- 大米坚果采购合同范本
- 建筑器械租赁合同范本
- 娱乐主播解除合同协议
- 如何代签送货合同协议
- 2026年许昌职业技术学院单招综合素质考试参考题库附答案详解
- 2025国考《行测》真题库(地市)及答案解析(夺冠)
- 2025安徽宣城市旌德县旅发置业有限公司招聘2人考试参考题库附答案
- 常州拆迁安置协议合同
- 扶贫工程设计合同范本
- 中图版地理七年级上册知识总结
- 大连理工大学固态相变各章节考点及知识点总节
- 肿瘤科专业组药物临床试验管理制度及操作规程GCP
- 统编版四年级下册语文第二单元表格式教案
- 测量系统线性分析数据表
- 上海农贸场病媒生物防制工作标准
- 第三单元课外古诗词诵读《太常引·建康中秋夜为吕叔潜赋》课件
- YY 0334-2002硅橡胶外科植入物通用要求
- GB/T 5836.1-1992建筑排水用硬聚氯乙烯管材
- 论文写作讲座课件
- 危险化学品-培训-课件
评论
0/150
提交评论