插值与拟合例题_第1页
插值与拟合例题_第2页
插值与拟合例题_第3页
插值与拟合例题_第4页
插值与拟合例题_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1 山区地貌:在某山区测得一些地点的高程如下表:(平面区域1200<=x<=4000,1200<=y<=3600),试作出该山区的地貌图和等高线图,并对几种插值方法进行比较。2 用给定的多项式,如y=x3-6x2+5x-3,产生一组数据(xi,yi,i=1,2,n),再在yi上添加随机干扰(可用rand产生(0,1)均匀分布随机数,或用rands产生n(0,1)分布随机数),然后用xi和添加了随机干扰的yi作的3次多项式拟合,与原系数比较。如果作2或4次多项式拟合,结果如何?3 用电压v=10伏的电池给电容器充电,电容器上t时刻的电压为 ,其中v0是电容器的初始电压,

2、是充电常数。试由下面一组t,v数据确定v0, 。2用给定的多项式,如y=x3-6x2+5x-3,产生一组数据(xi,yi,i=1,2,n),再在yi上添加随机干扰(可用rand产生(0,1)均匀分布随机数,或用rands产生n(0,1)分布随机数),然后用xi和添加了随机干扰的yi作的3次多项式拟合,与原系数比较。 分别作1、2、4、6次多项式拟合,比较结果,体会欠拟合、过拟合现象。解:程序如下:x=1:0.5:10;y=x.3-6*x.2+5*x-3;y0=y+rand;f1=polyfit(x,y0,1)%输出多项式系数y1=polyval(f1,x);%计算各x点的拟合值plot(x,y

3、,'+',x,y1) grid ontitle('一次拟合曲线');figure(2);f2=polyfit(x,y0,2)%2次多项式拟合y2=polyval(f2,x);plot(x,y,'+',x,y2);grid ontitle('二次拟合曲线');figure(3);f4=polyfit(x,y0,4)%4次多项式拟合y3=polyval(f4,x);plot(x,y,'+',x,y3)grid ontitle('四次拟合曲线');figure(4);f6=polyfit(x,y0,6)%

4、6次多项式拟合y4=polyval(f6,x);plot(x,y,'+',x,y4)grid ontitle('六次拟合曲线');运行结果如下:依次为各个拟合曲线的系数(按降幂排列)f1 =43.2000 -149.0663f2 = 10.5000 -72.3000 89.8087f4 =0.0000 1.0000 -6.0000 5.0000 -2.5913f6 = 0.0000 -0.0000 0.0000 1.0000 -6.0000 5.0000 -2.4199运行后,比较拟合后多项式和原式的系数,发现四次多项式系数与原系数比较接近,四次多项式的四次项系

5、数很小。作图后,发现一次和二次多项式的图形与原函数的差别比较大,属于欠拟合的情况,而四次多项式和六次多项式符合得比较好。作图如下:3.解:据题意分析如下:电容器充电的数学模型已经建立。(已知v=10)可见,v(t)与成指数变化关系,所以在通过曲线拟合的时候,使用指数曲线ya1ea2x。(非线性拟合)。首先进行变量代换在程序中用v1代替v(t),t0代替,v2是拟合后的曲线方程:对变形后取对数,有令y=ln(10-) ,f1=ln(10-) ,f2= -1/t0,则v0=10-exp(f(2), t0= -1/ f(1)。编写程序如下:t=0.5 1 2 3 4 5 7 9;v1=6.36 6.

6、48 7.26 8.22 8.66 8.99 9.43 9.63;y=log(10- v1);f=polyfit(t,y,1)t0=-1/f(1)v0=10-exp(f(2)v2=10-(10-v0)*exp(-t/t0);plot(t,v1,'rx',t,v2,'k:')grid onxlabel('时间t(s)'),ylabel('充电电压(v)');title('电容器充电电压与时间t的曲线');程序运行输出结果如下:f =-0.2835 1.4766t0 = 3.5269 v0 =5.6221即电容器的初始电压为 v0 =5.6221,=3.5629。4.某年美国旧车价格的调查资料如下表其中xi表示轿车的使用年数,yi表示相应的平均价格。试分析用什么形式的曲线来拟合上述的数据,并预测使用4.5年后轿车的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论