4R机构矩阵法求解运动学_第1页
4R机构矩阵法求解运动学_第2页
4R机构矩阵法求解运动学_第3页
4R机构矩阵法求解运动学_第4页
4R机构矩阵法求解运动学_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1 建立D-H坐标系。DH坐标(后置)杆号转角变量连杆扭角连杆间距连杆长度9idiai1q0.502e2%0.5030.504q%0.505000.502.计算i-;TCOj -SOjCaj SajSOj-i-:R = S0j C&Cai -COiSaj.0Soq CoqS0jCctjCOjCaj Sa: 0SttiSOjCOjSotjCetiajCOfajS0j di 1 -即:C0!SOiCcXjSa】 SB】a±CQiS0!COiCttiCOjSeXiaOi0Sa】Cgdi.0001 -?T =cex o?T =S0J 00 -1LO 0-S0! O'C0i 0

2、 00.50 1 .0C020S02O'C030-S030-2T =S02001C02000.5;!T =S9300-1CO3000.5.0001 .0001 .C040S04O'rl000!t =S04001C04000.500100100.5.0001 .0001 -3.任意设定各关节变量,计算;了(解运动学正问题);设定 = 02 = 04 = K/3 '则:= 0T . 1T . 2T . 3T .和-0.6875-0.3247-0.64950-0.6495-0.12500.75000-0.32470.9374-0.12500-0.703611.03121.06

3、251.00000.50000-0.8660o-0.500000.8660o-0.50000-0.8660o-0.860000.500000.86000-0.500000.860000.500000-100.50100.50-100.500000010000.500000.86600-110000.86000-0.5000001000100.50010.50001-0001 -4.利用Paul反变换法求解各关节变量. :T=和畀孑T:T-fT在式的两边同时乘:T“得:T“ ;T =扑 h-4T-|TC0!S0X00 '-0.6875-0.6495-0.3247-0.7036-100-1

4、0.5-0.3247-0.12500.93741.0312S0iC0i00-0.64950.7500-0.12501.06250001 .0001.0000 -:厂1¥t二由;T 得;T-1 二C0!0SB】.0 -S0!0CE00-10000.501 .-0.6875C1 -0.3247S10.64950.6875S - 0.3247C0(1)式右边为: 0.6495C - 0.1250S1-0.75000.6495S1 -0.1250C10 0.3247C1 + 0.9374S0.12500.3247S1 + 0.9374C00.7036C + 1.0312Si-1.06250.

5、7036S1 + 1.0312C1r«xOxPxny°yayPynzOzazPzLo001J1T . 2T . 3T . 二其中:;nynx = C02C03C04 S02S04=S02C03®4 + C02S04 ; nz = S03C04Oz = C03ox = S03C02 ; Oy S03S02 ax = C02C03S04 + C04S02 ; 3y = S02C63S04 C02C04 ; az = S03S04px = o.5co2co3se4 + o.5co4se2 - o.5se3co2 + o.sso2 ;Py = O.5S02C03S04 O

6、.5C04C02 O.5S03S02 O.5C02 ;pz = O.5S03S04 + O.5C03 + 0.5III式两边对应元素相等得Se3S04 = 0.3247Sx + 0.9374Ci O.5se3se4 + O.5C03 + 0.5 = 0.7036Si + 1.0312CiC03 = 0.6495S - 0.1250Ci解得°严%,将°严兀沧代入得0 3 = %将0, 0 3代入得°4 = 73乂丁 -Se3S02=-O.75OO解得0 2 = "/33山机器人的位移方程求其末端轨迹(x,y,z)0T = 0T . 1T . 2T . 3T

7、 . 4T 二C0!0SBO'ce20S02O'ce30-S&3O'C040S04(TS0!0C0i0S020C020se30CO30S040C0400-100.50100.50-100.50100.5.0001 ._o001 .0001.0001 .1000 -nxOxax px-0100ny°yay Py苴中0010.5nz°z5 Pz0001 -Lo00 1px = o.5ce1c02c03s04 -o.ssecece -+O.5S02C0i - O.5S0!py = O.5S01C02C03S04 + O.5S04C01S03 +-

8、O.SSECESE +O.5S02S0! + O.5C0!pz = 0.5Ce2C04 - O.5CO3SO2S04 + O.5S03SO2 + O.5C02 + 0.5当Oi =sm(7rt/4) (0<t<l)利用MATLAB对末端轨迹进行仿真,其MATLAB程序如下:t二0:0. 001:1;a=sin(pi/4*t);x二0. 5. *cos (a) *cos (a) *cos (a) *sin(a)一0 5 *sin(a) *sin(a) *sin(a) +0. 5 *sin(a) *co s (a) *cos (a)一0 3 *cos (a) *cos (a) *sin

9、(a)一0. 5 *sin(a) *cos (a) +0 3 *sin(a) *cos (a)一 0. 5. *sin(a);y二0. 5. *sin(a) *cos (a) *cos (a) *sin(a) +0. 5. *sin(a) *cos (a) *sin(a) +0. 5 *sin(a) *si n (a) *cos (a) 一0 5 *sin (a) *cos (a) *sin (a) +0. 5 *cos (a) *cos (a) +0 5 *sin (a) *sin (a) + 0. 5. *cos (a);z二0. 5. *cos (a) *cos (a)一0 5 *sin

10、(a) *cos (a) *sin(a) +0. 5 *sin(a) *sin(a) +0 5 *cos (a) +0.5;plot3(x, y, z,' r');xlabel (' x');ylabel (' y');zlabel (' z');titleC机器人末端轨迹');grid on;得到的图形为下图,机器人末端轨迹机器人末端轨迹图利用ADAMS仿真图像如下所示:7.当 X = 0, 2*0.15 *sin(2*t),2*0.15 *cos(2* t)rm/s, °G<1,并任意设定关 节初始位形

11、,求解机器人关节轨迹(利用速度方程求解运动学逆问),并用ADAMS模型进行仿 真。机器人正运动解方程为:X=J0则其逆运动解方程为:e=jx其中丿为雅戈比方程且8xdx6rnxOx axPxlde±ny°y亏Py4nzoz azPz&804Lo0 01其中个元素如下所示:nx = O.5S016020304 O.5S04C01S03 O.5C04S01S02 + 0.58030291 O.5C01C03 O.5S02S0! - O.5C0!;ox = -O.5C0XS02C03S04 + 05“4(:久(:&2 + O.5S63se2C0i + O.5C02

12、C0i ;ax = -O.5C01C62SO3se4 - O.5S04S01C03 - O.SCCEC% + 0.58003;px = O.5C01C92Ce3ce4 - O.5C04SOiS03 - O.5S04ceiS02;ny = O.5C01C02C03S04 - OESSBiS% + 05“4(:&»&2 - OSBiC% +O.5S02C0X- O.5S0!;oy = -O.5S01S02C03S04 + O.5C04S01C02 + O.SSSES% + OECESE;ay = -0.5S01Ce2S63S04 + O.5S04C01C03 一 Q.SC

13、ezS 一 OECES%;py = O.5S01C02C03C04 + O.5C04COJS03 - OESSBiSE;Oz = -O.5S02C04 O.5C03S04C02 + O.5C02S03 O.5S02 ;az = O.5S04S02S03 + O.5S02C03 ;Pz = O.5C02S04 O.5C04S02C03;利用MATLAB程序仿真的关节轨迹程序如下:function dS=M(t, x)nl二-0. 5*sin(x(1)*cos(x(2)*cos(x(3)*sin(x(4)-0. 5*sin(x(4)*cos(x(l)*sin(x(3) -0. 5*sin(x(2)

14、*sin(x(l)*cos(x(4) +0. 5*sin(x(l)*cos(x(2)*sin(x(3)-0 5*cos(x(1) )*cos (x (3)-0 5*sin(x (2) *sin(x (1)-0 5*cos (x (1);ol二-0. 5*cos (x(1) *sin(x (2) *cos (x (3) *sin(x (4) +0. 5*cos (x (2) *cos (x (1) *cos (x(4) +0. 5*cos(x(l)*sin(x(2)*sin(x(3) +0. 5*cos(x(2)*cos(x(1);al=0. 5*cos(x(1)*cos(x(2)*sin(x(

15、3)*sin(x(4)-0. 5*cos(x(3)*sin(x(l)*sin(x(4) -0. 5*cos (x (1) *cos (x (2) *cos (x (3) +0. 5*sin(x (3) *sin(x (1);pl二0. 5*cos(x(l)*cos(x(2)*cos(x(3)*cos(x(4)-0. 5*sin(x(3)*sin(x(l)*cos(x(4)- 0. 5*cos(x(l)*sin(x(2)*sin(x(4);n2=0. o*cos(x(1)*cos(x(2)*cos(x(3)*sin(x(4)-0. 5*sin(x(4)*sin(x(l)*sin(x(3) +0.

16、 5*sin(x(2)*cos(x(l)*cos(x(4)-0. 5*cos(x(l)*cos(x(2)*sin(x(3)-0. 5*sin(x(1) *cos(x(3) +0. 5*sin(x(2)*cos(x(1)-0. 5*sin(x(l);o2=0. 5*sin(x(1) *sin(x(2) *cos (x (3) *sin(x (4) +0. 5*cos (x(2) *sin(x (1) *cos (x (4) +0. 5*sin(x(l) *sin (x (2) *sin (x (3) +0. 5*cos (x (2)*sin(x(l);a2=0. o*sin(x(1)*cos(x

17、(2)*sin(x(3)*sin(x(4)+0. 5*cos(x(3)*cos(x(1)*sin(x(4) -0. 5*sin (x (1) *cos (x (2) *cos (x (3) -0. 5*sin (x (3) *cos (x (1);p2=0. o*sin(x(1)*cos(x(2)*cos(x(3)*cos(x(4)+0. 5*sin(x(3)*cos(x(l)*cos(x(4)- 0. 5*sin(x(1)*sin(x(2)*sin(x (4);n3二 0;o3=0. 5*sin(x(2)*cos(x(4)-0. 5*cos(x(2)*cos(x(3)*sin(x(4)+0. 5*cos(x(2)*sin(x (3)-0. 5*sin(x(2);a3=0. o*sin(x(2)*sin(x(3)*sin(x(4)+0. 5*sin(x(2)*cos (x(3);p3二-0. 5*cos (x (2) *sin(x(4)-0. 5*sin(x (2) *cos (x(3) *cos (x (4);J=nl ol al pl;n2 o2 a2 p2;n3 o3 a3 p3;J_1二pinv(J);dy=0;2*pi*0. 15*sin(2*pi*t);2*pi*0. 15*cos(2*pi*t);dS

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论