下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第3课时§2.2.2 向量的减法运算及其几何意义教学目标:1. 了解相反向量的概念;2. 掌握向量的减法,会作两个向量的减向量,并理解其几何意义;3. 通过阐述向量的减法运算可以转化成向量的加法运算,使学生理解事物之间可以相互转化的辩证思想.教学重点:向量减法的概念和向量减法的作图法.教学难点:减法运算时方向的确定.学 法:减法运算是加法运算的逆运算,学生在理解相反向量的基础上结合向量的加法运算掌握向量的减法运算;并利用三角形做出减向量.教 具:多媒体或实物投影仪,尺规授课类型:新授课教学思路:一、 复习:向量加法的法则:三角形法则与平行四边形法则a b d c 向量加法的运算定律:
2、例:在四边形中, .解:二、 提出课题:向量的减法1 用“相反向量”定义向量的减法(1) “相反向量”的定义:与a长度相同、方向相反的向量.记作 -a(2) 规定:零向量的相反向量仍是零向量.-(-a) = a. 任一向量与它的相反向量的和是零向量.a + (-a) = 0 如果a、b互为相反向量,则a = -b, b = -a, a + b = 0 (3) 向量减法的定义:向量a加上的b相反向量,叫做a与b的差. 即:a - b = a + (-b) 求两个向量差的运算叫做向量的减法.2 用加法的逆运算定义向量的减法: 向量的减法是向量加法的逆运算:oabbaba-b 若b + x = a,
3、则x叫做a与b的差,记作a - b3 求作差向量:已知向量a、b,求作向量 (a-b) + b = a + (-b) + b = a + 0 = a 作法:在平面内取一点o, 作= a, = b 则= a - b 即a - b可以表示为从向量b的终点指向向量a的终点的向量. 注意:1°表示a - b.强调:差向量“箭头”指向被减数oababb-bbba+ (-b)ab 2°用“相反向量”定义法作差向量,a - b = a + (-b) 显然,此法作图较繁,但最后作图可统一.4 探究:) 如果从向量a的终点指向向量b的终点作向量,那么所得向量是b - a.a-baabbboa
4、-baabboaoba-ba-bbao-b)若ab, 如何作出a - b?三、 例题:例一、(p 例三)已知向量a、b、c、d,求作向量a-b、c-d. 解:在平面上取一点o,作= a, = b, = c, = d, abcbadcdo 作, , 则= a-b, = c-da b d c例二、平行四边形中,a,b,用a、b表示向量、.解:由平行四边形法则得: = a + b, = = a-b变式一:当a, b满足什么条件时,a+b与a-b垂直?(|a| = |b|)变式二:当a, b满足什么条件时,|a+b| = |a-b|?(a, b互相垂直)变式三:a+b与a-b可能是相当向量吗?(不可能, 对角线方向不同)练习:98四、 小结:向量减法的定义、作图法|五、 作业:p103第4、题六、 板书设计(略)七、 备用习题:1.在abc中, =a, =b,则等于( )a.a+b b.-a+(-b) c.a-b d.b-a2.o为平行四边形abcd平面上的点,设=a, =b, =c, =d,则a.a+b+c+d=0 b.a-b+c-d=0 c.a+b-c-d=0 d.a-b-c+d=0.如图,在四边形abcd中,根据图示填空:a+b= ,b+c= ,c-d= ,a+b+c-d= .、如图所示,o是四边形ab
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 飞机的教案8篇
- 有关市场营销社会实践调查报告(3篇)
- 工程师个人总结工作总结范文6篇
- 校内奖学金获奖感言500字(30篇)
- DB12-1100-2021 平板玻璃工业大气污染物排放标准
- 山东省临沂市(2024年-2025年小学五年级语文)统编版专题练习(上学期)试卷及答案
- 2024年家用电力器具专用配件项目资金需求报告代可行性研究报告
- 水弹性城市道路绿化施工技术规范编制说明
- 上海市县(2024年-2025年小学五年级语文)统编版摸底考试((上下)学期)试卷及答案
- 荆楚理工学院《习近平新时代中国特色社会主义思想概论》2022-2023学年第一学期期末试卷
- 陕煤集团笔试题库及答案
- 33 《鱼我所欲也》对比阅读-2024-2025中考语文文言文阅读专项训练(含答案)
- (正式版)HGT 22820-2024 化工安全仪表系统工程设计规范
- (高清版)TDT 1075-2023 光伏发电站工程项目用地控制指标
- 《中华民族共同体概论》考试复习题库(含答案)
- 2022-2023学年武汉市江岸区七年级英语上学期期中质量检测卷附答案
- 设备监造大纲正式版
- 【原创】水平三花样跳绳教学设计和教案
- 我的家乡石家庄PPT学习课件
- 瑞士麦尔兹并流蓄热式石灰窑及其技术改进
- 加油机故障描述讲解
评论
0/150
提交评论