小学奥数之方阵问题—例题习题及含答案_第1页
小学奥数之方阵问题—例题习题及含答案_第2页
小学奥数之方阵问题—例题习题及含答案_第3页
小学奥数之方阵问题—例题习题及含答案_第4页
小学奥数之方阵问题—例题习题及含答案_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、方阵问题知识导航学生排队,士兵列队,横着排叫做行,竖着排叫做列。如果行数与列数都相等,则正好排成一个正方形,这种图形就叫方队,也叫做方阵(亦叫乘方问题)。核心公式:一、实心方阵1方阵总人数=最外层每边人数的平方(方阵问题的核心)=每边数×每边数2方阵最外层每边人数=(方阵最外层总人数÷4)13方阵外一层每边人数比内一层每边人数多24去掉一行、一列的总人数去掉的每边人数×215、每层数=(每边数-1)×4二、空心方阵1、外边人数=总人数÷4÷层数+层数2、总数=最外层人数2 - 最内层人数2 =(最外层每边数-层数)×层数&#

2、215;4 =(最外层数+最内层数)×层数÷23、 内层数=外层数-84、每层数=(每边数-1)×45、实心方阵的总人数是一个完全平方数,空心方阵的总人数是4的倍数。例1 四年级同学参加广播操比赛,要排列成每行8人,共8行方阵。排列这个方阵共需要多少名同学?解题分析 这是一道实心方阵问题,求这个方阵里有多少名同学,就是求实心方阵中布点的总数。排列成每行8人点,共8行,就是有8个8点。求方阵里有多少名同学,就是求8个8人是多少人? 解:8×8=64(人) 答:排列这个方阵,共需要64名同学。例2 有一堆棋子,刚好可以排成每边6只的正方形。问棋子的总数是多少

3、?最外层有多少只棋子?解题分析 依题意可以知道:每边6只棋子的正方形,就是棋子每6只1排,一共有6排的实心方阵。根据方阵问题应用题的解题规律,求实心方阵总数的数量关系,总人数=每边人数推荐精选×每边人数,从而可以求出棋子的总数是多少只。而最外层棋子数则等于每边棋子数减去1乘以行数4,即(6-1)×4只。解:(1)棋子的总数是多少?6×6=36(只)(2)最外层有多少只棋子?(6-1)×4=20(只) 答:棋子的总数是36只,最外层有20只棋子。例3.三年级一班参加运动会入场式,排成一个方阵,最外层一周的人数为20人,问方阵最外层每边的人数是多少?这个方阵

4、共有多少人?分析:根据四周人数与每边人数的关系可知:每边人数=四周人数÷4+1,可以求出这个方阵最外层每边的人数,那么这个方阵队列的总人数就可以求了。解:(1)方阵最外层每边的人数:20÷4+1=5+1=6(人)(2)整个方阵共有学生人数:6×6=36(人)答:方阵最外层每边的人数是6人,这个方阵共有36人。例4:学校学生排成一个方阵,最外层的人数是60人,问这个方阵共有学生多少人?解析:方阵问题的核心是求最外层每边人数。根据四周人数和每边人数的关系可以知:每边人数=四周人数÷4+1,可以求出方阵最外层每边人数,那么整个方阵队列的总人数就可以求了。方阵最

5、外层每边人数:60÷4+1=16(人)整个方阵共有学生人数:16×16=256(人)。【巩固1】某校五年级学生排成一个方阵,最外一层的人数为60人.问方阵外层每边有多少人?这个方阵共有五年级学生多少人?解析:根据四周人数和每边人数的关系可以知:每边人数=四周人数÷4+1,可以求出方阵最外层每边人数,那么整个方阵队列的总人数就可以求了。解:方阵最外层每边人数:60÷41=16(人)整个方阵共有学生人数:16×16=256(人)答:方阵最外层每边有16人,此方阵中共有256人。【巩固2】晶晶用围棋子摆成一个三层空心方阵,最外一层每边有围棋子14个.

6、晶晶摆这个方阵共用围棋子多少个?解析:方阵每向里面一层,每边的个数就减少2个.知道最外面一层每边放14个,就可以求第二层及第三层每边个数推荐精选.知道各层每边的个数,就可以求出各层总数。解法1:最外边一层棋子个数:(14-1)×4=52(个)第二层棋子个数:(14-2-1)×4=44(个)第三层棋子个数:(14-2×2-1)×4=36(个).摆这个方阵共用棋子:52+4436132(个)解法2:还可以这样想:中空方阵总个数=(每边个数一层数)×层数×4进行计算。(14-3)×3×4=132(个)答:摆这个方阵共需1

7、32个围棋子。【巩固3】一个正方形的队列横竖各减少一排共27人,求这个正方形队列原来有多少人?解析:依据:去掉一行、一列的总人数去掉的每边人数×21可知每边的人数是:(人)原人数是:(人)【巩固4】小红用棋子摆成一个正方形实心方阵用棋子100枚,最外边的一层共多少枚棋子?解析:这要用到方阵的公式逆运算,100必然是一个数的平方数因为(人),并且是实心的方阵,所以最外层有10人。例5 一堆棋子排成一个实心方阵,共有8行8列,如果去掉一行一列,要去掉多少只棋子?还剩下多少只棋子?解题分析 排成方阵的棋子,无论排在任何地方,都既是其中一排的棋子,也是其中一行的棋子,所以,无论去掉哪一行和哪

8、一列,总会有一只棋子被重复去掉1次,因此,要求出去掉一行一列去掉多少只棋子,就是要求出比原来方阵中2行的棋子数少1只。另外,要求出剩下多少只棋子,就要先求出棋子的总数,然后减去去掉的棋子数,就是剩下的棋子数。 解:(1)去掉多少只棋子? 8×2-1=15(只)(2)还剩多少只棋子?8×8-15=49(只)答:要去掉15只棋子,还剩下49只棋子。例6 育英小学四年级的同学排成一个实心方阵队列,还剩下5人,如果横竖各增加一排,排成一个稍大的实心方阵,则缺少26人。育英小学四年级有多少人?解题分析 排成一个实心方阵队列,还剩下5人,说明是多出5人,如果横竖各增加一排后,缺少26人

9、,说明横竖各增加一排所需要的人数是5人与26人的和,那么(5+26)人相当原来方阵中两排的人数多1人,从(5+26)人中减去角上的1人,再除以2,就可求出原来方阵中一排的人数。因此,可求出原来方阵中的人数,然后加上剩下的5人,就可求出四年级的总人数是多少人。推荐精选 解:(1)原来方阵中每排有多少人? (5+26-1)÷2=15(人)(2)四年级共有多少人?15×15+5=230(人) 答:育英小学四年级有230人。例7:参加中学生运动会团体操比赛的运动员排成了一个正方形队列。如果要使这个正方形队列减少一行和一列,则要减少33人。问参加团体操表演的运动员有多少人?解析:如下

10、图表示的是一个五行五列的正方形队列。从图中可以看出正方形的每行、每列人数相等;最外层每边人数是5,去一行、一列则一共要去9人,因而我们可以得到如下公式:· · · · ·· · · · ·· · · · ·· · · · ·· · · · ·去掉一行、一列的总人数去掉的每边人数×21解 :方阵问题的核心是求最外层每边人数。原题中去掉一行、

11、一列的人数是33,则去掉的一行(或一列)人数 人方阵的总人数为最外层每边人数的平方,所以总人数为(人)【巩固】 参加军训的学生进行队列表演,他们排成了一个七行七列的正方形队列,如果去掉一行一列,请问:要去掉多少名学生?还剩下多少名学生?解析:如上图表示的是一个4行4列的实心正方形队列,从图中可以看出正方形队列的特点:(1)正方形队列每行、每列的人数相等,因此总人数每行人数×每列人数。(2)去掉横竖各一排时,有且只有1人是同时属于被减去的一行和一列的,如图中点A所示。因此去掉的总人数原每行人数×21,或去掉的总人数减少后每行人数×21。本题中所求,即去掉的人数7&#

12、215;2113(人)或去掉的人数(71)×2113(人)还剩的人数(71)×(71)36(人)或还剩的人数7×713491336(人)答:如果去掉一行一列,要去掉13名学生,还剩下36名学生。例8 同学们排成一个三层的空心方阵。已知最内层每边有6人,这个方阵共有多少人?推荐精选解题分析 要求出这个方阵有多少人,就要先示出这个方阵最外层每边多少。已知最内层每边有6人,又知道这个空心方阵有3层,根据方阵问题应用题特点,可以求出这个方阵最外层每边有6+(3-1)×2人,即10人。又根据方阵问题应用题数量关系:空心阵总人数=(外边人数-层数)×层数&

13、#215;4,即可求出这个方阵共有多少人。 解:6+(3-1)×2-3×3×4=84(人) 答:这个方阵共有84人。例9.明明用围棋子摆成一个三层空心方阵,如果最外层每边有围棋子15个,明明摆这个方阵最里层一周共有多少棋子?摆这个三层空心方阵共用了多少个棋子?分析:(1)方阵每向里面一层,每边的个数就减少2个,知道最外面一层,每边放15个,可以求出最里层每边的个数,就可以求出最里层一周放棋子的总数。(2)根据最外层每边放棋子的个数减去这个空心方阵的层数,再乘以层数,再乘以4,计算出这个空心方阵共用棋子多少个。解:(1)最里层一周棋子的个数是:(15-2-2-1)&

14、#215;4=40(个)(2)这个空心方阵共用的棋子数是:(15-3)×3×4=144(个)答:这个方阵最里层一周有40个棋子;摆这个空心方阵共用144个棋子。例10:解放军战士排成一个每边12人的中空方阵,共四层,求总人数?解法1:这样想:把中空方阵的总人数,看作中实方阵总人数减去空心方阵人数。(1)中实方阵总人数:12×12=144(人)(2)第四层每边人数:12-2×(4-1)=6(人)(3)空心方阵人数:(6-2)×(6-2)=16(人)(4)中空方阵人数:144-16=128(人)答:总人数是128人。小结:中空方阵总人数=外边人数&

15、#215;外边人数-(内边人数-2)×(内边人数-2)解法2:这样想:把中空方阵分成四个相等的长方形。(1)每个长方形的长=外边人数-层数12-4=8(人)(2)每个长方形的宽是层数:4人(3)总人数:8×4×4=128(人)答:总人数是128人。小结:中空方阵总人数=(每边人数-层数)×层数×4推荐精选【巩固】学校开展联欢会,要在正方形操场四周插彩旗。四个角上都插一面,每边插7面。一共要准备多少面旗子?解析:依据求外层个数的公式:(边数-1)×4(面) 例11:一个街心花园如右图所示.它由四个大小相等的等边三角形组成.已知从每个小三

16、角形的顶点开始,到下一个顶点均匀栽有9棵花.问大三角形边上栽有多少棵花?整个花园中共栽多少棵花?解析:从已知条件中可以知道大三角形的边长是小三角形边长的2倍.又知道每个小三角形的边上均匀栽9株,则大三角形边上栽的棵数为:(棵)。又知道这个大三角形三个顶点上栽的一棵花是相邻的两条边公有的,所以大三角形三条边上共栽花:(棵)。.再看图中画斜线的小三角形三个顶点正好在大三角形的边上.再计算大三角形栽花棵数时已经计算过一次,所以小三角形每条边上栽花棵数为:(棵)解:大三角形三条边上共栽花:(棵)中间画斜线小三角形三条边上栽花:(棵)整个花坛共栽花:(棵)答:大三角形边上共栽花48棵,整个花坛共栽花69

17、棵。例12.玲玲家的花园中,有一个如下图那样,由四个大小相同的小等边三角形组成的一个大三角形花坛,玲玲在这个花坛上种了若干棵鸡冠花,已知每个小三角形每边上种鸡冠花5棵,问大三角形的一周有鸡冠花多少棵?玲玲一共种鸡冠花多少棵?推荐精选分析:(1)由图可知大三角形的一条边是由两条小三角形的边组成的,而在大三角形一条边的中间那棵花,是两条小三角形的边所共用的,所以如果小三角形每边种花5棵,那么大三角形每边上种花的棵数就是5×2-1=9棵了,又由于大三角形三个顶点上的3棵花,都是大三角形的两条边所共用的,所以大三角形一周种花的棵数等于大三角形三边上种花棵数的和减去三个顶点上重复计算的3棵花,

18、即:9×3-3=24,就是大三角形一周种花的棵数。(2)三角形各条边上种鸡冠花棵数的总和,等于里边小三角形一周上种花的棵数,加上大三角形一周种花的棵数,再减去重复计算的3棵花(因为里边小三角形的三个顶点上的三棵花,也分别是外边大三角形每条边上的一棵花)。解:(1)大三角形一周上种花的棵数是:(5×2-1)×3-3=24(棵)(2)小三角形一周种鸡冠花的棵数是:(5-1)×3=12(棵)(3)玲玲一共种鸡冠花的棵数是:24+12-3=33(棵)答:大三角形一周种鸡冠花24棵;玲玲一共种鸡冠花33棵。例13.有杨树和柳树以隔株相间的种法,种成7行7列的方阵,

19、问这个方阵最外一层有杨树和柳树各多少棵?方阵中共有杨树,柳树各多少棵?分析:根据已知条件柳树和杨树的种法有如下两种,假设黑点表示杨树,白点表示柳树观察图(1)(2)不管是柳树种在方阵最外层的角上还是杨树种在方阵最外层的角上,方阵中除最里边一层外其它层杨树和柳树都是相同的。因而杨树和柳树的棵数相等,即最外层杨,柳树分别为(7-1)×4÷2=12(棵)。当柳树种在方阵最外层的角上时,最内层的一棵是柳树;当杨树种在方阵最外层的角上时,最内层的一棵是杨树,即在方阵中,杨树和柳树总数相差1棵。解:(1)最外层杨柳树的棵数分别为:(7-1)×4÷2=12(棵)(2)

20、当杨树种在最外层角上时,杨树比柳树多1棵:杨树:(7×7+1)÷2=25(棵)柳树:7×7-25=24(棵)(3)当柳树种在最外层角上时,柳树比杨树多1树柳树(7×7+1)÷2=25(棵)杨树7×7-25=24(棵)答:在图(1)(2)两种方法中,方阵最外层都有杨树12棵,柳树12棵,方阵中总共有杨树25棵,柳树12棵,方阵中总共有杨树25棵,柳树24棵,或者有杨树24棵,柳树25棵。例14. 小红把平时节省下来的全部五分硬币先围成一个正三角形,正好用完,后来又改围成一个正方形,也正好用完。如果正方形的每条边比三角形的每条边少用5枚硬

21、币,则小红所有五分硬币的总价值是多少?推荐精选解一设正方形每边x枚硬币,三角形每边y枚硬币,一共有N枚硬币,根据公式可得方程组:N=4x4N=3y-3N=60y-x=5,因为每枚硬币5分,所以总价值3元。注释 这里围成的三角形和正方形都指的是空心的。解二根据数字特性法:硬币能围成正三角形硬币的个数是3的倍数硬币的价值可以三等分根据选项选择C。 例15. 要在一块边长为48米的正方形地里种树苗,已知每横行相距3米,每竖列相距6米,四角各种一棵树,问一共可种多少棵树苗?()解析根据公式:棵数=总长÷间隔+1。边长为48米,每横行相距3米,共有48÷3+1=17行;边长为48米,

22、每横行相距6米,共有48÷6+1=9列;可得:17×9=153(棵),一共可种树苗153棵。 【巩固】同学们做早操,排成一个正方形的方阵,从前、后、左、右数,小明都是第5个,这个方阵共有多少人?解析:如图,实心圆表示小明的位置,可以知道,这个队列每行都是9人。解:每行每列数:(人) 共有:(人)练 一 练1.某校少先队员可以排成一个四层空心方阵如果最外层每边有20个学生,问这个空心方阵最里边一周有多少个学生?这个四层空心方阵共有多少个学生?2.六一儿童节前夕,在校园雕塑的周围,用204盆鲜花围成了一个每边三层的方阵求最外面一层每边有鲜花多少盆?3.三年级(1)班的学生参加体

23、操表演,排成队形正好是由每7个人为一边的6个三角形组成的一个正六边形,求正六边形一周共有多少名学生?三(1)班参加体操表演的共有多少人?推荐精选4.现有松树和柏树以隔株相间的种法,种成9行9列的方阵,问这个方阵最外层有松树和柏树各多少棵?方阵中共有松树柏树各多少棵?练 一 练 答 案(1)(20-2×3-1)×4=42(个)(20-40×4×4=256(个)(2)最外层每边人数=总数÷4÷层数+层数204÷4÷3+3=20(盆)(3)7×6-6=36(人) 7×12-6×2-5=67(

24、人)(4)最外层松柏各是:(9-1)×4÷2=16(棵)共有松柏树是:(9×9+1)÷2=41(棵)81-41=40(棵)答:柏树41棵,松树40棵,或松树41棵,柏树40棵。例16:小明用围棋子摆了一个五层中空方阵,一共用了200枚棋子,请问:最外边一层每边有多少枚棋子?解析1:利用“相邻两层之间,每层的总数相差8”的特点,可知最外层共有棋子数:(200+8+8×2+8×3+8×4)÷556(个)最外层每边的棋子数:56÷4+115(个)解析2:如练习中的图,把棋子分成相等的四部分。每一部分的棋子数:2

25、00÷450(个)每一部分每排的棋子数:50÷510(个)最外层每边的棋子数:10515(个)综合列式为:200÷4÷5515(个)答:最外边一层每边有15枚棋子。【巩固】游行队伍中,手持鲜花的少先队员在一辆彩车的四周围成每边三层的方阵,最外边一层每边12人,请问:彩车周围的少先队员共有多少人?解析1:请同学们自己画一个图,下图是一个三层中空方阵的示意图,不难发现,有如下特点:(1)外层每边点的个数都比相邻内层的每边点的个数多2;(2)每相邻两层之间,点的总数相差8个。最外层队员的总数:(人)推荐精选三层共有队员的总数:=(人)解析2:如下图可分成相等的

26、四部分,每一部分的人数:(123)×39×327(人)三层共有队员数:27×4108(人)答:彩车周围的少先队员共有108人。这个问题还有别的解法,请同学们自己试着做一下。例17. 有一列士兵排成若干层的中空方阵,外层共有68人,中间一层共有44人,则该方阵士兵的总人数是()。A. 296人  B. 308人  C. 324人  D. 348人答案B解一最外层68人,中间一层44人,则最内层为44×26820人(成等差数列)。因此一共有:68-20817(层),总人数为44×7308。

27、 解二中间一层共44人,总人数是44×层数,是44的倍数,结合选项直接锁定B。例18. 有一队学生,排成一个中空方阵,最外层的人数共48人,最内层人数为24人,则该方阵共有多少人。A. 120  B. 144  C. 176  D. 194答案B解一设最外层每边x人,最内层每边y人,根据公式:4x-4=484y-4=24x=13y=7因此外层每边13人,内部空心部分每边7-25人,根据“逆向法思维”:共有132-52=144人。解二总人数(48+24)×层数÷236×层数,是36的倍数,直接锁定

28、B。解三根据公式:相邻两圈相差8,因此很容易得到这几圈分别为48、40、32、24,直接加起来即可。推荐精选例19. 军训的学生进行队列表演,排成了一个7行7列的正方形队列,如果去掉一行一列,要去掉多少人?还剩下多少人?    分析与解:如下图:         方法一:去掉的一行一列的人数为: (人)    剩下的人数为: (人)    方法二:去掉后剩下的是6行6列的正方形队列,即 (人)    去掉的

29、人数为: (人)例20. 光明小学四年级原准备排成一个正方形队列参加广播操表演,由于服装不够,只好横竖各减少一排,这样共需去掉27人,问四年级原来准备多少人参加表演?    分析与解:此题刚好是例1的逆向题,根据正方形队列的特点可知:    原每行人数=(去掉一行一列的人数+1)÷2    即:原来每行人数是 (人)    原来准备参加表演的人数: (人)    答:四年级原准备196人参加表演。例21. 参加中学生运动会团体操比赛的运

30、动员排成了一个正方形队列。如果要使这个正方形队列减少一行和一列,则要减少33人。问参加团体操表演的运动员有多少人?分析 如下图表示的是一个五行五列的正方形队列。从图中可以看出正方形的每行、每列人数相等;最外层每边人数是5,去一行、一列则一共要去9人,因而我们可以得到如下公式:去掉一行、一列的总人数=去掉的每边人数×2-1· · · · ·· · · · ·推荐精选· · · · ·· · · ·

31、·· · · · ·解析:方阵问题的核心是求最外层每边人数。原题中去掉一行、一列的人数是33,则去掉的一行(或一列)人数=(33+1)÷2=17方阵的总人数为最外层每边人数的平方,所以总人数为17×17=289(人)例22. 军训的学生进行队列表演,排成了一个7行7列的正方形队列,如果去掉一行一列,要去掉多少人?还剩下多少人?    分析与解:如下图:         方法一:去掉的一行一列的人数为: (人)

32、0;   剩下的人数为: (人)    方法二:去掉后剩下的是6行6列的正方形队列,即 (人)    去掉的人数为: (人)    例23. 光明小学四年级原准备排成一个正方形队列参加广播操表演,由于服装不够,只好横竖各减少一排,这样共需去掉27人,问四年级原来准备多少人参加表演?    分析与解:此题刚好是例1的逆向题,根据正方形队列的特点可知:    原每行人数=(去掉一行一列的人数+1)÷2 

33、0;  即:原来每行人数是 (人)    原来准备参加表演的人数: (人)    答:四年级原准备196人参加表演。例24. 正方形舞厅四周均匀地装彩灯,如果四个角都装一盏,且每边12盏,那么这个舞厅四周共装彩灯多少盏?    推荐精选分析与解:如下图:         方法一:从图(1)可以看出,角上的四盏灯各属于两行,所以彩灯总数应为:   (盏)    方法二:按图(2)

34、把彩灯分成相等的四部分,因此彩灯总数为:    (盏)    答:这个舞厅四周共装彩灯44盏。例25. 游行队伍中,手持鲜花的少先队员在一辆彩车的四周围成每边三层的方阵。最外层每边12人,问彩车周围的少先队员共有多少人?    分析与解:    方法一:这是一个只有3层的中空方阵,最外层每边有12人,最外层一共有 (人),第二层每边少2人,即第二层每边10人,第二层共有 (人),比第一层总数少8人,同理,第三层总数是 (人)    三层共有队员的

35、总数: (人)    方法二:如下图,可把队员分成人数相等的四部分,每一部分的人数:    (人)        三层共有队员数: (人)    方法三:从12行12列的中实方阵中减去中间的空心方阵,就是队员人数:    (人)推荐精选例26. 小明用围棋子摆了一个五层的空心方阵,共用了200个棋子,问最外边一层每边有多少个棋子?    分析与解:    方

36、法一:利用相邻两层之间,每层的总数相差8的特点。可知最外层共有棋子数:    (个)    最外层每边的棋子数: (个)    方法二:如下图,把棋子分成相等的四部分,每一部分的棋子数为: (个),每一部分每排的棋子数为: (个)    最外层每边的棋子数为: (个)         列综合算式:    (个)    答:最外层每边有棋子15个。练

37、习题:    1. 运动员入场式要求排成一个9行9列的正方形方阵,如果去掉2行2列,要减少多少运动员?    2. 学校为庆祝“十一”,用盆花摆了一个中实方阵,最外一层有36盆花。求这个方阵共有花多少盆?    3. 一个由圆片摆成的中实方阵,最外一层有12个圆片,把4个这样的中实方阵拼成一个大的中实方阵,那么最外层应该有多少个圆片?    4. 有一个用圆片摆成的两层中空方阵,外层每边有16个圆片,如果把内层的圆片取出来,在外层再摆一层,变成一个新的中空方阵,应再增加多少圆

38、片?    5. 解放军进行排队表演,组成一个外层有48人,内层有16人的多层中空方阵,这个方阵有几层?一共有多少人?   【练习题答案】    1. 运动员入场式要求排成一个9行9列的正方形方阵,如果去掉2行2列,要减少多少运动员?推荐精选    (人)    (人)    (人)    答:要减少32名运动员。    2. 学校为庆祝“十一”,用盆花摆了一个中实方

39、阵,最外一层有36盆花。求这个方阵共有花多少盆?    (盆)    (盆)    答:这个方阵共有花100盆。    3. 一个由圆片摆成的中实方阵,最外一层有12个圆片,把4个这样的中实方阵拼成一个大的中实方阵,那么最外层应该有多少个圆片?                (个)    答:最外层应该有28个圆片。 

40、   4. 有一个用圆片摆成的两层中空方阵,外层每边有16个圆片,如果把内层的圆片取出来,在外层再摆一层,变成一个新的中空方阵,应再增加多少圆片?    (个)    (个)    (个)    答:应再增加16个圆片。    5. 解放军进行排队表演,组成一个外层有48人,内层有16人的多层中空方阵,这个方阵有几层?一共有多少人?    (层)    (人)

41、0;   答:这个方阵有5层,一共有160人。推荐精选例27 某小学四年级的同学排成一个四层空心方阵还多15人,如果在方阵的空心部分再增加一层又少21人。这个小学四年级的学生一共有多少人?解题分析 排成四层空心方阵多15人,在方阵的空心部分增加一层21人,说明增加这一层的人数就是从外向内第五层的人数是(15+21)人,根据每相邻两层的人数相差8人,可分别求出每层人数,然后霜加,再加上多的15人,就可求出四年级的总人数。 解:(1)从外向内第五层有多少人? 15+21=36(人) (2)从外向内第四层有多少人? 36+8=44(人)(3)从外向内第三层有多少人? 44+8=5

42、2(人) (4)从外向内第二层有多少人? 52+8=60(人)(5)最外层有多少人? 60+8=68(人) (6)四年级一共有多少人? 44+52+60+68+15=239(人) 答:四年级的学生一共有239人。例28 一些解放军战士组成一个长方阵,经一次队列变换后,增加了6行,减少了10列,恰组成一个方阵,一个人也不多,一个人也不少。则原长方形阵共有()人。解析设该正方形阵每边x人,则原长方形阵为(x-6)行,(x+10)列。x2=(x-6)(x+10)x=15,因此共有152=225人,选择B。例29. 有若干人,排成一个空心的四层方阵。现在调整阵形,把最外边一层每边人数减少16人,层数由

43、原来的四层变成八层,则共有()人。A. 160  B. 1296  C. 640  D. 1936答案C解析设调整前最外层每边x人,调整后每边y人,根据“逆向法思维”:x-y=16x2-(x-8)2=y2-(y-16)2x=44y=28因此:442-(44-8)2=640(人)。 课后作业1、若干名同学排成中实方阵则多12人,若要将这个方阵改摆成纵横两个方向各增加1人的方阵则还差9人排满,请问:原有学生多少人?推荐精选解析:由于纵横两个方向各增加1人,因此不但将剩余12人摆上,而且还差9人,说明一横行与一竖行的人数总和是12921人。

44、又由于纵横两个方向各增加1人,因此只有1人同属于横行与纵行,在数每边上的人数时,总被多数一次,因此可以用21人先加上被重复数过的1人,再除以2,也就得到每边人数。列式为(211)÷211人。求出每边人数,就可求出假设排满后的人数,列式为11×11121人,用121人减去差的9人就是原来人数,列式为1219112人。也可以根据原来的方阵再加上12,请你试一试。答:原有学生112人。2、 有一队士兵排成一个中实方阵,最外一层有100人,请问:方阵中一共有士兵多少人?解析:要想求出方阵中一共有多少士兵,就应先求出方阵的最外层每边有多少人。已知方阵最外一层有100人,用100

45、47;425人,每边是不是25人呢?不是的,因为平均分成4份后,还需要再加上1,才正好是每边上的人数,列式应该为100÷4126人。因此方阵中一共有26×26676人。答:一共有676人。3、 小刚用若干枚棋子摆成一个中实方阵,最外层每边摆6枚,请问:要摆成这样一个中实方阵至少需要多少枚棋子?最外一层的棋子总数是多少?解析:如图,最外一层每边摆6枚,根据方阵每行每列个数相等特点,因此一共有6×636枚棋子。最外一层每边有6枚,如果用6×424枚,就认为是最外一层棋子数的答案的话,那就错了。因为正方形每个顶点上的棋子分属于一行一列,这样棋子在计算总数时就被

46、多数了一次,这样的顶点一共有4个,需要把多数的减去,才能得到正确的结果。列式是6×4420枚。说明:这道题还可以这样想:数每边棋子时,可以按上图先划分成4个相等的块,这样每边就有5枚了,因此用5×420枚,也可以得到正确答案。按照划分块的方法不同,至少还有两种方法,请同学们试一试。4、一队学生站成20行20列方阵,如果去掉4行4列,那么要减少多少人?解析1:把去掉4行4列转化为一行一列的去掉,就可用例6的结论: 去掉一行一列的总人数原每行人数×21反复利用4次这个公式,只要注意“原每行人数”的变化,即可列式为:推荐精选去掉4行4列的总人数20×21+(2

47、01)×21(202)×21+(203)×21401=381+361+341144(人)解析2:我们还可以这样想:原来是一个7行7列的方阵,若去掉4行4列后,仍剩下一个小正方形方阵,因此去掉4行4列的总人数原正方形方阵每边人数4,即去掉的总人数20×20(204)×(204)400256144(人)答:去掉4行4列,要减少144人。5、正方形舞厅四周均匀的装彩灯,如果四个角都装一盏且每边装12盏,那么这个舞厅四周共装彩灯多少盏?解析(1):自己画图可以看出,角上的四盏灯各属于两行,所以彩灯总数应为:12×4444(2):还可以把彩灯分

48、成相等的四部分,因此彩灯总数为:(121)×444(盏)答:这个舞厅四周共装彩灯44盏。6、“六一”儿童节前夕,在校园雕塑的周围,用204盆鲜花围成了一个每边三层的方阵,请你求出最外面一层每边有鲜花多少盆?解析:分析思路参见例6,最外层每边人数=总数÷4÷层数+层数204÷4÷3+3=20(盆)答:最外面一层每边有鲜花20盆7、四年级一班参加运动会入场式,排成一个方阵,最外层一周的人数为20人,请问:方阵最外层每边的人数是多少?这个方阵共有多少人?解析:根据四周人数与每边人数的关系可知:每边人数=四周人数÷4+1,可以求出这个方阵最外

49、层每边的人数,那么这个方阵队列的总人数就可以求出来了。解:(1)方阵最外层每边的人数:20÷4+1=5+1=6(人) (2)整个方阵共有学生人数:6×6=36(人)答:方阵最外层每边的人数是6人,这个方阵共有36人。8、明明用围棋子摆成一个三层中空方阵,如果最外层每边有围棋子15个,明明摆这个方阵最里层一周共有多少枚棋子?摆这个三层空心方阵共用了多少枚棋子?推荐精选解析:(1)方阵每向里面一层,每边的个数就减少2个,知道最外面一层,每边放15个,可以求出最里层每边的个数,就可以求出最里层一周放棋子的总数。(2)根据最外层每边放棋子的个数减去这个中空方阵的层数,再乘以层数,再

50、乘以4,计算出这个中空方阵共用棋子多少个。解:(1)最里层一周棋子的个数是:(15-2-2-1)×4=40(个) (2)这个空心方阵共用的棋子数是:(15-3)×3×4=144(个)答:这个方阵最里层一周有40个棋子;摆这个中空方阵共用144个棋子。9、若干战士排成一个四层中空方阵,只知道最外一层每边有12人,请你求出总人数。解析:我们可以采用先求出每层人数再求总人数的方法进行。解:由于最外层每边有12人,因此最外层一共有(121)×444人,又根据方阵相邻两层,外层比内层人数多8的特点,因此第二层有44836人,第三层有36828人,第四层有28820

51、人。因此一共有44+36+28+20128人。还可以这样想,把四层中空方阵划分如例5的形状,我们发现每个长方形可以看成四排战士,每排有8人组成。因此一个长方形有8×432人,一共有4个长方形,32×4128人。当然还可以先把中空方阵看成中实方阵,然后再减去补上的小中实方阵人数,也可以求出一共有多少人,看成中实方阵后,最外一层每边12人,因此一共有12×12144人。又因为在方阵中相邻两个正方形每边人数相差2,因此第二层每边有12210人,第三层每边有1028人,第四层每边有826人,第五层每边有624人。因此小的中实方阵有4×416人。14416128人

52、就表示一共有战士的人数。答:一共有128人。10、有若干盆鲜花摆成一个中空方阵,最外层共摆48盆,最内层共摆24盆,请问:共摆了多少盆鲜花?解析:由于方阵中相邻两个正方形每边相差8,因此第二层应摆鲜花48840盆,第三层有花40832盆,第四层有花32824盆。这样通过枚举方法求出一共有四层花,及中间两层花的总数。因此一共摆了48403224144盆。答:一共摆了144盆。11、有杨树和柳树以隔株相间的种法,种成7行7列的方阵,问这个方阵最外一层有杨树和柳树各多少棵?方阵中共有杨树,柳树各多少棵?解析:根据已知条件柳树和杨树的种法有如下两种,假设黑点表示杨树,白点表示柳树观察图(1)(2)不管

53、是柳树种在方阵最外层的角上还是杨树种在方阵最外层的角上,方阵中除最里边一层外其它层杨树和柳树都是相同的。因而杨树和柳树的棵数相等。即最外层杨,柳树分别为(7-1)×4÷2=12(棵)。推荐精选当柳树种在方阵最外层的角上时,最内层的一棵是柳树;当杨树种在方阵最外层的角上时,最内层的一棵是杨树,即在方阵中,杨树和柳树总数相差1棵。解:(1)最外层杨柳树的棵数分别为:(7-1)×4÷2=12(棵) (2)当杨树种在最外层角上时,杨树比柳树多1棵:杨树:(7×7+1)÷2=25(棵)柳树:7×7-25=24(棵) (3)当柳树种在最

54、外层角上时,柳树比杨树多1树柳树(7×7+1)÷2=25(棵)杨树7×7-25=24(棵)答:在两种方法中,方阵最外层都有杨树12棵,柳树12棵,方阵中总共有杨树25棵,柳树24棵,或者有杨树24棵,柳树25棵。练习题:    1. 运动员入场式要求排成一个9行9列的正方形方阵,如果去掉2行2列,要减少多少运动员?    (人)    (人)    (人)    答:要减少32名运动员。    2. 学校为庆祝“十一”,用盆花摆了一个中实方阵

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论