浙江省11市2015年中考数学试题分类解析专题20:压轴题_第1页
浙江省11市2015年中考数学试题分类解析专题20:压轴题_第2页
浙江省11市2015年中考数学试题分类解析专题20:压轴题_第3页
浙江省11市2015年中考数学试题分类解析专题20:压轴题_第4页
浙江省11市2015年中考数学试题分类解析专题20:压轴题_第5页
已阅读5页,还剩63页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、浙江省11市2015年中考数学试题分类解析汇编(20专题)专题20:压轴题1. (2015年浙江杭州3分)设二次函数的图象与一次函数的图象交于点,若函数的图象与轴仅有一个交点,则【 】A. B. C. D. 【答案】B.【考点】一次函数与二次函数综合问题;曲线上点的坐标与方程的关系.【分析】一次函数的图象经过点,.又二次函数的图象与一次函数的图象交于点,函数的图象与轴仅有一个交点,函数是二次函数,且它的顶点在轴上,即.令,得,即.故选B.2. (2015年浙江湖州3分)如图,已知在平面直角坐标系xOy中,O是坐标原点,点A是函数 (x<0)图象上一点,AO的延长线交函数(x>0,k

2、是不等于0的常数)的图象于点C,点A关于y轴的对称点为A,点C关于x轴的对称点为C,连接CC,交x轴于点B,连结AB,AA,AC,若ABC的面积等于6,则由线段AC,CC,CA,AA所围成的图形的面积等于【 】A.8 B.10 C. D.【答案】B.【考点】反比例函数综合题;曲线上点的坐标与方程的关系;轴对称的性质;特殊元素法和转换思想的应用.【分析】如答图,连接AC,点A是函数 (x<0)图象上一点,不妨取点A.直线AB:.点C在直线AB上,设点C.ABC的面积等于6,解得(舍去).点C.点A关于y轴的对称点为A,点C关于x轴的对称点为C,点A,点C.由线段AC,CC,CA,AA所围成

3、的图形的面积等于.故选B.3. (2015年浙江嘉兴4分) 如图,抛物线交轴于点A(,0)和B(, 0),交轴于点C,抛物线的顶点为D.下列四个命题:当时,;若,则;抛物线上有两点P(,)和Q(,),若,且,则;点C关于抛物线对称轴的对称点为E,点G,F分别在轴和轴上,当时,四边形EDFG周长的最小值为. 其中真命题的序号是【 】A. B. C. D. 【答案】C.【考点】真假命题的判断;二次函数的图象和性质;曲线上点的坐标与方程的关系;轴对称的应用(最短线路问题);勾股定理. 【分析】根据二次函数的图象和性质对各结论进行分析作出判断:从图象可知当时,故命题“当时,”不是真命题;抛物线的对称轴

4、为,点A和B关于轴对称,若,则,故命题“若,则”不是真命题;故抛物线上两点P(,)和Q(,)有,且,又抛物线的对称轴为,故命题“抛物线上有两点P(,)和Q(,),若,且,则” 是真命题;如答图,作点E关于轴的对称点M,作点D关于轴的对称点N,连接MN,ME和ND的延长线交于点P,则MN与轴和轴的交点G,F即为使四边形EDFG周长最小的点.,的顶点D的坐标为(1,4),点C的坐标为(0,3).点C关于抛物线对称轴的对称点为E,点E的坐标为(2,3).点M的坐标为,点N的坐标为,点P的坐标为(2,4).当时,四边形EDFG周长的最小值为.故命题“点C关于抛物线对称轴的对称点为E,点G,F分别在轴和

5、轴上,当时,四边形EDFG周长的最小值为” 不是真命题. 综上所述,真命题的序号是.故选C.4. (2015年浙江金华3分)如图,正方形ABCD和正三角形AEF都内接于O,EF与BC,CD分别相交于点G,H,则的值是【 】A. B. C. D. 2【答案】C.【考点】正方形和等边三角形的性质;圆周角定理;锐角三角函数定义;特殊角的三角函数值;等腰直角三角形的判定和性质,特殊元素法的应用.【分析】如答图,连接,与交于点.则根据对称性质,经过圆心,垂直 平分,.不妨设正方形ABCD的边长为2,则.是O的直径,.在中,.在中,.易知是等腰直角三角形,.又是等边三角形,.故选C.5. (2015年浙江

6、丽水3分)如图,在方格纸中,线段,的端点在格点上,通过平移其中两条线段,使得和第三条线段首尾相接组成三角形,则能组成三角形的不同平移方法有【 】A. 3种 B. 6种 C. 8种 D. 12种【答案】B【考点】网格问题;勾股定理;三角形构成条件;无理数的大小比较;平移的性质;分类思想的应用.【分析】由图示,根据勾股定理可得:.,根据三角形构成条件,只有三条线段首尾相接能组成三角形.如答图所示,通过平移其中两条线段,使得和第三条线段首尾相接组成三角形,能组成三角形的不同平移方法有6种.故选B6. (2015年浙江宁波4分) 如图,小明家的住房平面图呈长方形,被分割成3个正方形和2个长方形后仍是中

7、心对称图形. 若只知道原住房平面图长方形的周长,则分割后不用测量就能知道周长的图形标号为【 】A. B. C. D. 【答案】A.【考点】多元方程组的应用(几何问题).【分析】如答图,设原住房平面图长方形的周长为,的长和宽分别为,的边长分别为.根据题意,得,得,将代入,得(定值),将代入,得(定值),而由已列方程组得不到.分割后不用测量就能知道周长的图形标号为.故选A.7. (2015年浙江衢州3分)如图,已知等腰,以为直径的圆交于点,过点的的切线交于点,若,则的半径是【 】A. B. C. D. 【答案】D【考点】等腰三角形的性质;切线的性质;平行的判定和性质;矩形的判定和性质;勾股定理;方

8、程思想的应用【分析】如答图,连接,过点作于点,.,.是的切线,.,且四边形是矩形.,由勾股定理,得.设的半径是,则.由勾股定理,得,即,解得.的半径是.故选D8. (2015年浙江绍兴4分)挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其它棒条压着时,就可以把它往上拿走. 如图中,按照这一规则,第1次应拿走号棒,第2次应拿走号棒,则第6次应拿走【 】A. 号棒 B. 号棒 C. 号棒 D. 号棒【答案】D.【考点】探索规律题(图形变化类).【分析】当一根棒条没有被其它棒条压着时,就可以把它往上拿走. 如图中,按照这一规则,第1次应拿走号棒,第2次应拿走号棒,第3次应拿走号棒,第4次应拿走

9、号棒,第5次应拿走号棒,第6次应拿走号棒,故选D.9. (2015年浙江台州4分)某班有20位同学参加围棋、象棋比赛,甲说:“只参加一项的人数大于14人” ;乙说:“两项都参加的人数小于5人” .对于甲、乙两人的说法,有下列四个命题,其中真命题的是【 】A.若甲对,则乙对 B.若乙对,则甲对 C.若乙错,则甲错 D.若甲粗,则乙对【答案】B.【考点】逻辑判断推理题型问题;真假命题的判定. 【分析】针对逻辑判断问题逐一分析作出判断:A.若甲对,即只参加一项的人数大于14人,等价于等于15或16或17或18或19人,则两项都参加的人数为5或4或3或2或1人,故乙不对; B.若乙对,即两项都参加的人

10、数小于5人,等价于等于4或3或2或1人,则只参加一项的人数为等于16或17或18或19人,故甲对; C.若乙错,即两项都参加的人数大于或等于5人,则只参加一项的人数小于或等于15人,故甲可能对可能错; D.若甲粗,即只参加一项的人数小于或等于14人,则两项都参加的人数大于或等于6人,故乙错.综上所述,四个命题中,其中真命题是“若乙对,则甲对”. 故选B.10. (2015年浙江温州4分)如图,C是以AB为直径的半圆O上一点,连结AC,BC,分别以AC,BC为边向外作正方形ACDE,BCFG,DE,FG,的中点分别是M,N,P,Q. 若MP+NQ=14,AC+BC=18,则AB的长是【 】A.

11、B. C. 13 D. 16【答案】C.【考点】正方形的性质;垂径定理;梯形的中位线定理;方程思想、转换思想和整体思想的应用.【分析】如答图,连接OP、OQ,DE,FG,的中点分别是M,N,P,Q,点O、P、M三点共线,点O、Q、N三点共线.ACDE,BCFG是正方形,AE=CD=AC,BG=CF=BC.设AB=,则.点O、M分别是AB、ED的中点,OM是梯形ABDE的中位线.,即.同理,得.两式相加,得.MP+NQ=14,AC+BC=18,.故选C.11. (2015年浙江义乌3分)挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其它棒条压着时,就可以把它往上拿走. 如图中,按照这一规则

12、,第1次应拿走号棒,第2次应拿走号棒,则第6次应拿走【 】A. 号棒 B. 号棒 C. 号棒 D. 号棒【答案】D.【考点】探索规律题(图形变化类).【分析】当一根棒条没有被其它棒条压着时,就可以把它往上拿走. 如图中,按照这一规则,第1次应拿走号棒,第2次应拿走号棒,第3次应拿走号棒,第4次应拿走号棒,第5次应拿走号棒,第6次应拿走号棒,故选D.12. (2015年浙江舟山3分) 如图,抛物线交轴于点A(,0)和B(, 0),交轴于点C,抛物线的顶点为D.下列四个命题:当时,;若,则;抛物线上有两点P(,)和Q(,),若,且,则;点C关于抛物线对称轴的对称点为E,点G,F分别在轴和轴上,当时

13、,四边形EDFG周长的最小值为. 其中真命题的序号是【 】A. B. C. D. 【答案】C.【考点】真假命题的判断;二次函数的图象和性质;曲线上点的坐标与方程的关系;轴对称的应用(最短线路问题);勾股定理. 【分析】根据二次函数的图象和性质对各结论进行分析作出判断:从图象可知当时,故命题“当时,”不是真命题;抛物线的对称轴为,点A和B关于轴对称,若,则,故命题“若,则”不是真命题;故抛物线上两点P(,)和Q(,)有,且,又抛物线的对称轴为,故命题“抛物线上有两点P(,)和Q(,),若,且,则” 是真命题;如答图,作点E关于轴的对称点M,作点D关于轴的对称点N,连接MN,ME和ND的延长线交于

14、点P,则MN与轴和轴的交点G,F即为使四边形EDFG周长最小的点.,的顶点D的坐标为(1,4),点C的坐标为(0,3).点C关于抛物线对称轴的对称点为E,点E的坐标为(2,3).点M的坐标为,点N的坐标为,点P的坐标为(2,4).当时,四边形EDFG周长的最小值为.故命题“点C关于抛物线对称轴的对称点为E,点G,F分别在轴和轴上,当时,四边形EDFG周长的最小值为” 不是真命题. 综上所述,真命题的序号是.故选C.1. (2015年浙江杭州4分)如图,在四边形纸片ABCD中,AB=BC,AD=CD,A=C=90°,B=150°,将纸片先沿直线BD对折,再将对折后的图形沿从一

15、个顶点出发的直线裁剪,剪开后的图形打开铺平,若铺平后的图形中有一个是面积为2的平行四边形,则CD= 【答案】或.【考点】剪纸问题;多边形内角和定理;轴对称的性质;菱形、矩形的判定和性质;含30度角直角三角形的性质;相似三角形的判定和性质;分类思想和方程思想的应用. 【分析】四边形纸片ABCD中,A=C=90°,B=150°,C=30°.如答图,根据题意对折、裁剪、铺平后可有两种情况得到平行四边形:如答图1,剪痕BM、BN,过点N作NHBM于点H,易证四边形BMDN是菱形,且MBN=C=30°.设BN=DN=,则NH=.根据题意,得,BN=DN=2, NH

16、=1.易证四边形BHNC是矩形,BC=NH=1. 在中,CN=.CD=.如答图2,剪痕AE、CE,过点B作BHCE于点H,易证四边形BAEC是菱形,且BCH =30°.设BC=CE =,则BH=.根据题意,得,BC=CE =2, BH=1.在中,CH=,EH=.易证,即.综上所述,CD=或.2. (2015年浙江湖州4分)已知正方形ABC1D1的边长为1,延长C1D1到A1,以A1C1为边向右作正方形A1C1C2D2,延长C2D2到A2,以A2C2为边向右作正方形A2C2C3D3(如图所示),以此类推,若A1C1=2,且点A,D2, D3,D10都在同一直线上,则正方形A9C9C10

17、D10的边长是 【答案】.【考点】探索规律题(图形的变化);正方形的性质;相似三角形的判定和性质.【分析】如答图,设AD10与A1C1相交于点E,则,.设,AD1=1,A1C1=2,.易得,.设,则,即.同理可得,正方形A9C9C10D10的边长是.3. (2015年浙江嘉兴5分)如图,在直角坐标系中,已知点A(0,1),点P在线段OA上,以AP为半径的P周长为1. 点M从A开始沿P按逆时针方向转动,射线AM交轴于点N(,0). 设点M转过的路程为().(1)当时,= ;(2)随着点M的转动,当从变化到时,点N相应移动的路径长为 【答案】(1);(2).【考点】单点和线动旋转问题;圆周角定理;

18、等腰直角三角形的判定和性质;等边三角形的判定和性质;含30度直角三角形的性质.【分析】(1)当时,.A(0,1),.(2)以AP为半径的P周长为1,当从变化到时,点M转动的圆心角为120°,即圆周角为60°.根据对称性,当点M转动的圆心角为120°时,点N相应移动的路径起点和终点关于轴对称.此时构成等边三角形,且. 点A(0,1),即OA=1,.当从变化到时,点N相应移动的路径长为.4. (2015年浙江金华4分)图1是一张可以折叠的小床展开后支撑起来放在地面的示意图,此时,点A,B,C在同一直线上,且ACD=90°.图2是小床支撑脚CD折叠的示意图,在

19、折叠过程中,ACD变形为四边形,最后折叠形成一条线段.(1)小床这样设计应用的数学原理是 (2)若AB:BC=1:4,则tanCAD的值是 【答案】(1)三角形的稳定性和四边形的不稳定性;(2).【考点】线动旋转问题;三角形的稳定性;旋转的性质;勾股定理;锐角三角函数定义.【分析】(1)在折叠过程中,由稳定的ACD变形为不稳定四边形,最后折叠形成一条线段,小床这样设计应用的数学原理是:三角形的稳定性和四边形的不稳定性.(2)AB:BC=1:4,设,则.由旋转的性质知,.在中,根据勾股定理得,.5. (2015年浙江丽水4分)如图,反比例函数的图象经过点(-1,),点A是该图象第一象限分支上的动

20、点,连结AO并延长交另一支于点B,以AB为斜边作等腰直角三角形ABC,顶点C在第四象限,AC与轴交于点P,连结BP.(1)的值为 .(2)在点A运动过程中,当BP平分ABC时,点C的坐标是 .【答案】(1) ;(2)(2,).【考点】反比例函数综合题;曲线上点的坐标与方程的关系;勾股定理;等腰直角三角形的性质;角平分线的性质;相似、全等三角形的判定和性质;方程思想的应用.【分析】(1)反比例函数的图象经过点(-1,),.(2)如答图1,过点P作PMAB于点M,过B点作BN轴于点N,设,则.ABC是等腰直角三角形,BAC=45°.BP平分ABC,.又,.易证,.由得,解得.,.如答图2

21、,过点C作EF轴,过点A作AFEF于点F,过B点作BEEF于点E,易知,设.又,根据勾股定理,得,即.,解得或(舍去).由,可得.6. (2015年浙江宁波4分)如图,已知点A,C在反比例函数的图象上,点B,D在反比例函数的图象上,ABCD轴,AB,CD在轴的两侧,AB=3,CD=2,AB与CD的距离为5,则的值是 【答案】6.【考点】反比例函数综合题;曲线上点的坐标与方程的关系;特殊元素法和方程思想的的应用【分析】不妨取点C的横坐标为1,点C在反比例函数的图象上,点C的坐标为.CD轴,CD在轴的两侧,CD=2,点D的横坐标为.点D在反比例函数的图象上,点D的坐标为.ABCD轴,AB与CD的距

22、离为5,点A的纵坐标为.点A在反比例函数的图象上,点A的坐标为.AB轴,AB在轴的两侧,AB=3,点B的横坐标为.点B在反比例函数的图象上,点B的坐标为.,. .7. (2015年浙江衢州4分)如图,已知直线分别交轴、轴于点、,是抛物线上的一个动点,其横坐标为,过点且平行于轴的直线交直线于点,则当时,的值是 .【答案】4或或或.【考点】二次函数与一次函数综合问题;单动点问题,曲线上点的坐标与方程的关系;勾股定理;分类思想和方程思想的应用【分析】根据题意,设点的坐标为,则.在令得.,即.由解得或.由解得或.综上所述,的值是4或或或.8. (2015年浙江绍兴5分) 实验室里,水平桌面上有甲、乙、

23、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两个相同的管子在容器的5cm高度处连通(即管子底端离容器底5cm),现三个容器中,只有甲中有水,水位高1cm,如图所示. 若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升cm,则开始注入 分钟的水量后,甲与乙的水位高度之差是0.5cm.【答案】或或【考点】方程思想和分类思想的应用【分析】甲、乙、丙三个圆柱形容器底面半径之比为1:2:1,注水1分钟,乙的水位上升cm,注水1分钟,甲、丙的水位上升cm.设开始注入分钟的水量后,甲与乙的水位高度之差是0.5cm.甲与乙的水位高度之差0.5cm时有三种情况:乙的水位低于甲的水位

24、时,有(分钟).甲的水位低于乙的水位,甲的水位不变时,(分钟),此时丙容器已向甲容器溢水.(分钟),(cm),即经过分钟丙容器的水到达管子底端,乙的水位上升cm,(分钟).甲的水位低于乙的水位,乙的水位到达管子底端,甲的水位上升时,乙的水位到达管子底端的时间为(分钟),(分钟).综上所述,开始注入或或分钟的水量后,甲与乙的水位高度之差是0.5cm.9. (2015年浙江台州5分)如图,正方形ABCD的边长为1,中心为点O,有一边长大小不定的正六边形EFGHIJ绕点O可任意旋转,在旋转过程中,这个正六边形始终在正方形ABCD内(包括正方形的边),当这个六边形的边长最大时,AE的最小值为 【答案】

25、.【考点】面动旋转问题;正方形和正六边形的性质;数形结合思想的应用.【分析】如答图,当这个正六边形的中心与点O重合,两个对点刚好在正方形两边中点,这个六边形的边长最大,此时,这个六边形的边长为.当顶点E刚好在正方形对角线AC的AO一侧时,AE的值最小,最小值为.10. (2015年浙江温州5分)图甲是小明设计的带图案的花边作品,该作品由形如图乙的矩形图案拼接而成(不重叠,无缝隙). 图乙中,EF=4cm,上下两个阴影三角形的面积之和为54cm2,其内部菱形由两组距离相等的平行线交叉得到,则该菱形的周长为 cm【答案】.【考点】菱形和平行四边形的性质;三角形和梯形面积的应用;相似判定和性质;待定

26、系数法、方程思想数形结合思想和整体思想的应用.【分析】如答图,连接MN、PQ,设MN=,PQ=,可设AB=,BC=.上下两个阴影三角形的面积之和为54,即.四边形DEMN、AFMN是平行四边形,DE=AF=MN=.EF=4,即.将代入得,化简,得.解得(舍去).AB=12,BC=14,MN=5,.易证MCDMPQ,解得.PM=.菱形MPNQ的周长为11. (2015年浙江义乌4分)实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两个相同的管子在容器的5cm高度处连通(即管子底端离容器底5cm),现三个容器中,只有甲中有水,水位高1cm,如图所示. 若每

27、分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升cm,则开始注入 分钟的水量后,甲与乙的水位高度之差是0.5cm.【答案】或或【考点】方程思想和分类思想的应用【分析】甲、乙、丙三个圆柱形容器底面半径之比为1:2:1,注水1分钟,乙的水位上升cm,注水1分钟,甲、丙的水位上升cm.设开始注入分钟的水量后,甲与乙的水位高度之差是0.5cm.甲与乙的水位高度之差0.5cm时有三种情况:乙的水位低于甲的水位时,有(分钟).甲的水位低于乙的水位,甲的水位不变时,(分钟),此时丙容器已向甲容器溢水.(分钟),(cm),即经过分钟丙容器的水到达管子底端,乙的水位上升cm,(分钟).甲的水位低于乙

28、的水位,乙的水位到达管子底端,甲的水位上升时,乙的水位到达管子底端的时间为(分钟),(分钟).综上所述,开始注入或或分钟的水量后,甲与乙的水位高度之差是0.5cm.12. (2015年浙江舟山4分)如图,在直角坐标系中,已知点A(0,1),点P在线段OA上,以AP为半径的P周长为1. 点M从A开始沿P按逆时针方向转动,射线AM交轴于点N(,0). 设点M转过的路程为(). 随着点M的转动,当从变化到时,点N相应移动的路径长为 【答案】.【考点】单点和线动旋转问题;圆周角定理;等边三角形的判定和性质;含30度直角三角形的性质.【分析】以AP为半径的P周长为1,当从变化到时,点M转动的圆心角为12

29、0°,即圆周角为60°.根据对称性,当点M转动的圆心角为120°时,点N相应移动的路径起点和终点关于轴对称.此时构成等边三角形,且. 点A(0,1),即OA=1,.当从变化到时,点N相应移动的路径长为.1. (2015年浙江杭州12分)如图,在ABC中(BC>AC),ACB=90°,点D在AB边上,DEAC于点E(1)若,AE=2,求EC的长(2)设点F在线段EC上,点G在射线CB上,以F,C,G为顶点的三角形与EDC有一个锐角相等,FG交CD于点P,问:线段CP可能是CFG的高线还是中线?或两者都有可能?请说明理由【答案】解:(1)ACB=90&

30、#176;,DEAC,DEBC.,AE=2,解得.(2)若,此时线段CP1为CFG1的斜边FG1上的中线.证明如下:,.又,. .又,. .线段CP1为CFG1的斜边FG1上的中线.若,此时线段CP2为CFG2的斜边FG2上的高线.证明如下:,又DEAC,. . CP2FG2.线段CP2为CFG2的斜边FG2上的高线.当CD为ACB的平分线时,CP既是CFG的FG边上的高线又是中线.【考点】平行线分线段成比例的性质;直角三角形两锐角的关系;等腰三角形的判定;分类思想的应用.【分析】(1)证明DEBC,根据平行线分线段成比例的性质列式求解即可.(2)分,和CD为ACB的平分线三种情况讨论即可.2

31、. (2015年浙江杭州12分)方成同学看到一则材料,甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N地,设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),y与t的函数关系如图1所示,方成思考后发现了图1的部分正确信息,乙先出发1h,甲出发0.5小时与乙相遇,请你帮助方成同学解决以下问题:(1)分别求出线段BC,CD所在直线的函数表达式;(2)当20<y<30时,求t的取值范围;(3)分别求出甲、乙行驶的路程S甲、S乙与时间t的函数表达式,并在图2所给的直角坐标系中分别画出它们的图象;(4)丙骑摩托车与乙同时出发,从N地沿同一条公路匀速前往M地,若丙经过h与乙相遇,问丙出

32、发后多少时间与甲相遇.【答案】解:(1)设线段BC所在直线的函数表达式为,解得.线段BC所在直线的函数表达式为.设线段CD所在直线的函数表达式为,解得.线段BC所在直线的函数表达式为.(2)线段OA所在直线的函数表达式为,点A的纵坐标为20.当时,即或,解得或.当时, t的取值范围为或.(3),.所画图形如答图:(4)当0时,丙距M地的路程与时间的函数关系式为.联立,解得与图象交点的横坐标为,丙出发后与甲相遇.【考点】一次函数的图象和性质;待定系数法的应用;直线上点的坐标与方程的关系;解方程组和不等式组;分类思想的应用.【分析】(1)应用待定系数法即可求得线段BC,CD所在直线的函数表达式.(

33、2)求出点A的纵坐标,确定适用的函数,解不等式组求解即可.(3)求函数表达式画图即可.(4)求出与时间的函数关系式,与联立求解.3. (2015年浙江嘉兴12分)某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元. 为按时完成任务,该企业招收了新工人,设新工人李明第天生产的粽子数量为只,与满足如下关系式:.(1)李明第几天生产的粽子数量为420只?(2)如图,设第天每只粽子的成本是元,与之间的关系可用图中的函数图象来刻画. 若李明第天创造的利润为元,求与之间的函数表达式,并求出第几天的利润最大?最大值是多少元(利润=出厂价-成本)?【答案】解:(1)设李明第天生产

34、的粽子数量为420只,根据题意,得,解得.答:李明第10天生产的粽子数量为420只.(2)由图象可知,当时,;当时,设,把点(9,4.1),(15,4.7)代入止式,得,解得.时,当时,(元);时,是整数,当时,(元);时,当时,(元).综上所述,与之间的函数表达式为,第12天的利润最大,最大值是768元.【考点】一元一次方程、一次函数和二次函数的综合应用;分类思想的应用.【分析】(1)方程的应用解题关键是找出等量关系,列出方程求解. 本题设李明第天生产的粽子数量为420只,等量关系为:“第天生产的粽子数量等于420只”.(2)先求出与之间的关系式,分,三种情况求解即可.4. (2015年浙江

35、嘉兴14分)类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)概念理解:如图1,在四边形ABCD中,添加一个条件,使得四边形ABCD是“等邻边四边形”,请写出你添加的一个条件;(2)问题探究:小红猜想:对角线互相平分的“等邻边四边形”是菱形,她的猜想正确吗?请说明理由;如图2,小红画了一个RtABC,其中ABC=90°,AB=2,BC=1,并将RtABC沿B的平分线方向平移得到,连结. 小红要使平移后的四边形是“等邻边四边形”,应平移多少距离(即线段的长)?(3)应用拓展:如图3,“等邻边四边形”ABCD中,AB=AD,BAD+BCD=90°

36、;,AC,BD为对角线,.试探究BC,CD,BD的数量关系.【答案】解:(1)(答案不唯一).(2)正确.理由如下:四边形的对角线互相平分,这个四边形是平行四边形.四边形是“等邻边四边形”,这个四边形有一组邻边相等.这个四边形是菱形.ABC=90°,AB=2,BC=1,.将RtABC平移得到,.i)如答图1,当时,;ii)如答图2,当时,;iii)如答图3,当时,延长交于点,则.平分,.设,则.在中,解得(不合题意,舍去).iv)如答图4,当时,同ii)方法,设,可得,即,解得(不合题意,舍去).综上所述,要使平移后的四边形是“等邻边四边形”,应平移2或或或的距离.(3)BC,CD,

37、BD的数量关系为.如答图5,将绕点A旋转到.,.【考点】新定义;面动平移问题;菱形的判定;全等三角形的判定和性质;相似三角形的判定和性质;等腰直角三角形的判定和性质;多边形内角和定理;勾股定理;分类思想和方程思想的应用.【分析】(1)根据定义,添加或或或即可(答案不唯一).(2)根据定义,分,四种情况讨论即可.(3)由,可将绕点A旋转到,构成全等三角形:,从而得到,进而证明得到,通过角的转换,证明,根据勾股定理即可得出.5. (2015年浙江湖州10分)问题背景:已知在ABC中,AB边上的动点D由A向B运动(与A,B不重合),点E与点D同时出发,由点C沿BC的延长线方向运动(E不与C重合),连

38、结DE交AC于点F,点H是线段AF上一点(1)初步尝试:如图1,若ABC是等边三角形,DHAC,且点D,E的运动速度相等,求证:HF=AH+CF小王同学发现可以由以下两种思路解决此问题:思路一:过点D作DGBC,交AC于点G,先证GH=AH,再证GF=CF,从而证得结论成立;思路二:过点E作EMAC,交AC的延长线于点M,先证CM=AH,再证HF=MF,从而证得结论成立.请你任选一种思路,完整地书写本小题的证明过程(如用两种方法作答,则以第一种方法评分)(2)类比探究:如图2,若在ABC中,ABC=90°,ADH=BAC=30°,且点D,E的运动速度之比是,求的值;(3)延

39、伸拓展:如图3,若在ABC中,AB=AC,ADH=BAC=36°,记,且点D、E的运动速度相等,试用含m的代数式表示(直接写出结果,不必写解答过程).【答案】解:(1)证明:选择思路一:如题图1,过点D作DGBC,交AC于点G,ABC是等边三角形,.ADG是等边三角形. .DHAC,.DGBC,.,即.选择思路二:如题图1,过点E作EMAC,交AC的延长线于点M,ABC是等边三角形,.DHAC,EMAC,.,.又,.(2)如答图1,过点D作DGBC,交AC于点G,则.,.由题意可知,.DGBC,.,即.(3).【考点】开放型;双动点问题;等边三角形的判定和性质;全等三角形的判定和性质

40、;相似三角形的判定和性质.【分析】(1)根据思路任选择一个进行证明即可.(2)仿思路一,作辅助线:过点D作DGBC,交AC于点G,进行计算.(3)如答图2,过点D作DGBC,交AC于点G,由AB=AC,ADH=BAC=36°可证:,由点D、E的运动速度相等,可得.从而可得.6. (2015年浙江湖州12分)已知在平面直角坐标系xOy中,O为坐标原点,线段AB的两个端点A(0,2),B(1,0)分别在y轴和x轴的正半轴上,点C为线段AB的中点,现将线段BA绕点B按顺时针方向旋转90°得到线段BD,抛物线y=ax2+bx+c(a0)经过点D.(1)如图1,若该抛物线经过原点O,

41、且.求点D的坐标及该抛物线的解析式;连结CD,问:在抛物线上是否存在点P,使得POB与BCD互余?若存在,请求出所有满足条件的点P的坐标,若不存在,请说明理由;(2)如图2,若该抛物线y=ax2+bx+c(a0)经过点E(1,1),点Q在抛物线上,且满足QOB与BCD互余,若符合条件的Q点的个数是4个,请直接写出a的取值范围.【答案】解:(1)如答图,过点D作DF轴于点F,.又,.点D的坐标为根据题意得,解得抛物线的解析式点、的纵坐标都为,轴和互余若要使得和互余,则只要满足设点的坐标为,i)当点在轴上方时,如答图,过点作轴于点,则,即,解得(舍去)点的坐标为ii)当点在轴下方时,如答图,过点作

42、轴于点,则,即,解得(舍去)点的坐标为综上所述,在抛物线上存在点P,使得POB与BCD互余,点的坐标为或(2)a的取值范围为或【考点】二次函数综合题;线动旋转问题;全等三角形的判定和性质;曲线上点的坐标与方程的关系;锐角三角函数定义;余角的性质;方程和不等式的应用;分类思想和数形结合思想的应用【分析】(1)根据证明即可得到,从而得到点D的坐标;由已知和曲线上点的坐标与方程的关系即可求得抛物线的解析式得可以证明,使得和互余,只要满足即可,从而分点在轴上方和点在轴下方讨论即可(2)由题意可知,直线BD的解析式为,由该抛物线y=ax2+bx+c(a0)经过点E(1,1),可得,所以抛物线的解析式为若

43、要使得和互余,则只要满足,据此分和两种情况讨论7. (2015年浙江金华10分)图1,图2为同一长方体房间的示意图,图2为该长方体的表面展开图.(1)蜘蛛在顶点处苍蝇在顶点B处时,试在图1中画出蜘蛛为捉住苍蝇,沿墙面爬行的最近路线;苍蝇在顶点C处时,图2中画出了蜘蛛捉住苍蝇的两条路线,往天花板ABCD爬行的最近路线和往墙面爬行的最近路线,试通过计算判断哪条路线更近?(2)在图3中,半径为10dm的M与相切,圆心M到边的距离为15dm,蜘蛛P在线段AB上,苍蝇Q在M的圆周上,线段PQ为蜘蛛爬行路线。若PQ与M相切,试求PQ的长度的范围.【答案】解:(1)如答图1,连结,线段就是所求作的最近路线.

44、EBAABFC两种爬行路线如答图2所示,由题意可得:在RtA'C'C2中, A'HC2= (dm);在RtA'B'C1中, A'GC1=(dm),路线A'GC1更近.(2)如答图,连接MQ,PQ为M的切线,点Q为切点,MQPQ.在RtPQM中,有PQ2=PM2QM2= PM2100,当MPAB时,MP最短,PQ取得最小值,如答图3,此时MP=30+20=50,PQ= (dm).当点P与点A重合时, MP最长,PQ取得最大值,如答图4,过点M作MNAB,垂足为N,由题意可得 PN=25,MN=50,在RtPMN中,.在RtPQM中,PQ=

45、(dm).综上所述, 长度的取值范围是.【考点】长方体的表面展开图;双动点问题;线段、垂直线段最短的性质;直线与圆的位置关系;勾股定理.【分析】(1)根据两点之间线段最短的性质作答.根据勾股定理,计算两种爬行路线的长,比较即可得到结论.(2)当MPAB时,MP最短,PQ取得最小值;当点P与点A重合时, MP最长,PQ取得最大值.求出这两种情况时的PQ长即可得出结论.8. (2015年浙江金华12分)如图,抛物线与轴交于点A,与轴交于点B,C两点(点C在轴正半轴上),ABC为等腰直角三角形,且面积为4. 现将抛物线沿BA方向平移,平移后的抛物线经过点C时,与轴的另一交点为E,其顶点为F,对称轴与

46、轴的交点为H.(1)求,的值;(2)连结OF,试判断OEF是否为等腰三角形,并说明理由;(3)现将一足够大的三角板的直角顶点Q放在射线AF或射线HF上,一直角边始终过点E,另一直角边与轴相交于点P,是否存在这样的点Q,使以点P,Q,E为顶点的三角形与POE全等?若存在,求出点Q的坐标;若不存在,请说明理由. 【答案】解:(1)ABC为等腰直角三角形,OA=BC.又ABC的面积=BC×OA=4,即=4,OA=2. A ,B ,C .,解得.(2)OEF是等腰三角形. 理由如下:如答图1,A ,B ,直线AB的函数表达式为,又平移后的抛物线顶点F在射线BA上,设顶点F的坐标为(m,m+2

47、).平移后的抛物线函数表达式为.抛物线过点C ,解得.平移后的抛物线函数表达式为,即.当y=0时,解得.E(10,0),OE=10.又F(6,8),OH=6,FH=8.,OE=OF,即OEF为等腰三角形.(3)存在. 点Q的位置分两种情形:情形一:点Q在射线HF上,当点P在轴上方时,如答图2.PQEPOE, QE=OE=10.在RtQHE中,,Q.当点P在轴下方时,如答图3,有PQ=OE=10,过P点作于点K,则有PK=6.在RtPQK中,,,.,.又,. , 即,解得.Q.情形二:点Q在射线AF上,当PQ=OE=10时,如答图4,有QE=PO,四边形POEQ为矩形,Q的横坐标为10.当时,

48、Q.当QE=OE=10时,如答图5.过Q作轴于点M,过E点作x轴的垂线交QM于点N,设Q的坐标为,.在中,有, 即,解得.当时,如答图5,Q.当时,如答图6, .综上所述,存在点Q或或或或,使以P,Q,E三点为顶点的三角形与POE全等.【考点】二次函数综合题;线动平移和全等三角形存在性问题;等腰直角三角形的性质;待定系数法的应用;曲线上点的坐标与方程的关系;勾股定理;全等三角形的判定和性质;相似三角形的判定和性质;分类思想和方程思想的应用.【分析】(1)由ABC为等腰直角三角形求得点A、B、C的坐标,应用待定系数法即可求得,的值. (2)求得平移后的抛物线解析式,从而求得点E、F的坐标,应用勾

49、股定理分别求出OE、OF、EF的长,从而得出结论.(3)分点Q在射线HF上和点Q在射线AF上两种情况讨论即可.9. (2015年浙江丽水10分)如图,在矩形ABCD中,E为CD的中点,F为BE上的一点,连结CF并延长交AB于点M,MNCM交射线AD于点N.(1)当F为BE中点时,求证:AM=CE;(2)若,求的值;(3)若,当为何值时,MNBE?【答案】解:(1)证明:F为BE中点,BF=EF.ABCD,MBF=CEF,BMF=ECF.BMFECF(AAS).MB=CE.AB=CD,CE=DE,MB=AM. AM=CE.(2)设MB=,ABCD,BMFECF. .,.,.MNMC,A=ABC=

50、90°,AMNBCM. ,即.(3)设MB=,由(2)可得.当MNBE时,CMBE.可证MBCBCE. ,即.当时,MNBE.【考点】探究型问题;矩形的性质;全等三角形的判定和性质;相似三角形的判定和性质. 【分析】(1)应用AAS证明BMFECF即可易得结论.(2)证明BMFECF和AMNBCM,应用相似三角形对应边成比例的性质即可得出结果.(3)应用(2)的一结结果,证明MBCBCE即可求得结果.10. (2015年浙江丽水12分)某乒乓球馆使用发球机进行辅助训练,出球口在桌面中线端点A处的正上方,假设每次发出的乒乓球的运动路线固定不变,且落在中线上,在乒乓球运行时,设乒乓球与端

51、点A的水平距离为(米),与桌面的高度为(米),运行时间为(秒),经多次测试后,得到如下部分数据:(秒)00.160.20.40.60.640.8(米)00.40.511.51.62(米)0.250.3780.40.450.40.3780.25(1)当为何值时,乒乓球达到最大高度?(2)乒乓球落在桌面时,与端点A的水平距离是多少?(3)乒乓球落在桌面上弹起后,与满足用含的代数式表示;球网高度为0.14米,球桌长(1.4×2)米,若球弹起后,恰好有唯一的击球点,可以将球沿直线扣杀到点A,求的值.【答案】解:如答图,以点 为原点,桌面中线为轴,乒乓球水平运动方向为正方向建立平面直角坐标系.(1)由表格中数据可知,当秒时,乒乓球达到最大高度.(2)由表格中数据可判断,是的二次函数,且顶点为(1,0.45),所以可设.将(0,0.25)代入,得,.当时,解得或(舍去).乒乓球落在桌面时,与端点A的水平距离是2.5米.(3)由(2)得,乒乓球落在桌面时的坐标为(2.5,0).将(2.5,0)代入,得,化简整理,得.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论