




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、吉林大学珠海学院课程设计报告多功能智能小车设计题目 专业综合课程设计 所属系部 测控技术与仪器 专业班级 15 班 学生姓名 吴聪 学 号 03121520 指导教师 谷峰 老师 设计地点 实验楼427实验室 20 15 年 9月 12日摘 要随着汽车工业的迅速发展,关于汽车的研究也就越来越受人们的关注,而汽车的智能化已成为科技发展的新方向。本设计就是在这样的背景下提出来的。此次设计的简易智能小车是基于单片机控制及传感器技术的,实现的功能是小汽车可自动寻迹行驶,并且能够利光电传感器检测道路上的障碍,利用电两个电机的差动调节, 控制电动小汽车的自动避障、寻光及自动停车,通过寻迹传感器进行黑线的检
2、测,并由单片机系统来控制智能车的行驶状态。采用PWM技术实现了电动机的多级调速.关键词:单片机 PWM 寻迹传感器 AbstractWith the development of automobile industry,people pay more attention to the research about cars, and the intelligent electric vehicles are more and more import. The design is put forward in this context .The simple design of smart ca
3、r is based on the single-chip control and sensor technology, the realization of an automatic tracing traffic, using Two electric motors differential regulation ,Control automatic electric car obstacle avoidance, light search and automatic parking. The use of rear-wheel drive front wheel steering mod
4、e of traveling through tracing sensors, such as Hall sensors detect the black lines and mileage records, by the single-chip system to decision-making Smart car driving. Using PWM technology to achieve a multi-stage motor speed .Key words: single-chip control PWM Seeks the mark sensor 第一章 前言1智能小车的作用和
5、意义自第一台工业机器人诞生以来,机器人的发展已经遍及机械、电子、冶金、交通、宇航、国防等领域。近年来机器人的智能水平不断提高,并且迅速地改变着人们的生活的方式。人们在不断探讨、改造、认识自然的过程中,制造能代替人劳动的机器一直是人类的梦想。随着科学技术的发展,机器人的感觉传感器的种类越来越多,其中视觉传感器成为自动行走和驾驶的重要部件。视觉的典型应用领域为自主式智能导航系统,对于视觉的各种技术而言图像处理技术已相当发达,而基于图像的理解技术还很落后,机器视觉需要通过大量的运算也能识别一些结构化环境简单的目标。视觉传感器的核心器件是摄像管或CCD,目前的CCD已能做到自动聚焦。但CCD传感器的价
6、格、体积和使用方式上并不占优势,因此在不要求清晰图像只需要粗略感觉的系统中考虑使用接近觉传感器是一种实用有效的方法。智能小车,也就是轮式机器人,最适合在那些人类无法工作的环境中工作,该技术可以应用于无人驾驶机动车,无人生产线,仓库,服务机器人,航空航天等领域。作为20世纪自动化领域的重大成就,机器人已经和人类社会的生产、生活密不可分。因此为了使智能小车工作在最佳状态,进一步研究及完善其速度和方向的控制是非常有必要的。智能小车要实现自动寻迹功能和避障功能就必须要感知导引线和障碍物,感知导引线相当给机器人一个视觉功能.避障控制系统是基于自动导引小车系统,基于它的智能小车实现自动识别路线,判断并自动
7、避开障碍,选择正确的行进路线.使用传感器感知路线和障碍并作出判断和相应的执行动作.该智能小车可以作为机器人的典型代表.它可以分为三大组成部分:传感器检测部分,执行部分,CPU.机器人要实现自动避障功能,还可以扩展循迹等功能,感知导引线和障碍物.可以实现小车自动识别路线,选择正确的行进路线,并检测到障碍物自动躲避.考虑使用价廉物美的红外反射式传感器来充当.智能小车的执行部分,是由直流电机来充当的,主要控制小车的行进方向和速度.单片机驱动直流电机一般有两种方案:第一,勿需占用单片机资源,直接选择有PWM功能的单片机,这样可以实现精确调速;第二,可以由软件模拟PWM输出调制,需要占用单片机资源,难以
8、精确调速,但单片机型号的选择余地较大.考虑到实际情况CPU使用51单片机,配合软件编程实现。 2智能小车国内外研究现状在现代化运输及物流系统中,SZD智能行小车因其独特的性能优点(整个系统由于是空中运行,地面操作控制,充分地利用厂房空间,有效地减少使用面积,实现地面、空中为一体的立体化自动输送系统,同时,它与输送链相比较,该输送系统运行速度更快,负载更大,抗污染更强,安装更为方面,生产成本更低等优点),在现代汽车生产制造行业中被普遍使用,但到目前为止,SZD智能小车输送线的生产都是单工位控制,双工位智能小车控制系统在国内还是属于空白,在国外著名的日本大福公司也只是进行了部分的研制和开发,虽取得
9、了一些进展,但造价相当昂贵,从目前国内汽车行业的现状看,单工位SZD智能小车输送线的生产已经满足不了汽车行业生产制造的要求,汽车生产厂商纷纷要求开发出具有双工位功能的智能小车系统,因此,此项技术的改进势在必行。现智能小车发展很快,从智能玩具到其它各行业都有实质成果.其基本可实现循迹,避障,检测贴片,寻光入库,避崖等基本功能,现在大学电子设计大赛智能小车又在向声控系统发展.比较出名的飞思卡尔智能小车更是走在前列,我此次的设计主要实现循迹避障通信及遥控功能。第二章 方案设计与论证根据题目要求,确定以下方案:本智能小车是以PCB电路板为车架,STC89C52为控制核心,加以直流减速电机、光电传感器,
10、红外发射管及红外接收管,稳压电源电路,红外检测及检测提示电路构成。系统由STC89C52通过IO口控制小车的前进,后退及转向,还可以通过PWM调制对小车车速进行调整。2.1 主控系统根据设计要求,我认为此设计属于多输入量的复杂程序设计控制问题。据此,拟定了以下两种方案并进行综合的比较论证,具体如下:方案一:选用一片CPLD(EPM7128LC84-15)作为系统的核心部件,实现控制与处理的功能。CPLD具有速度快、编程容易、资源丰富、开发周期短等优点,可利用VHDL语言进行编写开发。但CPLD在控制上较单片机有较大的劣势。同时,CPLD的处理速度非常快,而小车的行进速度不可能太高,那么对系统处
11、理信息的要求也就不会太高,在这一点上,MCU就已经胜任了。若采用该方案,必将在控制上遇到许许多多不必要增加的难题。为此,我们不采用该种方案,进而提出了第二种设想。方案二:采用单片机作为整个系统的核心,用其控制行进中的小车,以实现其既定的性能指标。充分分析我们的系统,其关键在于实现小车的自动控制,而在这一点上,单片机就显示出来它的优势控制简单、方便、快捷。这样一来,单片机就可以充分发挥其资源丰富、有较为强大的控制功能及可位寻址操作功能、价格低廉等优点。因此,这种方案是一种较为理想的方案。针对本设计特点多开关量输入的复杂程序控制系统,需要擅长处理多开关量的标准单片机,而不能用精简I/O口和程序存储
12、器的小体积单片机。根据这些分析,我选定了STC89C52单片机作为本设计的主控装置,51单片机具有功能强大的位操作指令,I/O口均可按位寻址,程序空间多达8K,对于本设计也绰绰有余,更可贵的是51单片机价格非常低廉。在综合传感器、两部电机的驱动等诸多因素后,我们决定用一片单片机,充分利用STC89C52单片机的资源。2.2 电机选择和电机驱动模块本系统为智能小车,对于智能小车来说,其驱动轮的驱动电机的选择和电机的驱动就显得十分重要。由于本实验要实现对路径控制定位和速度测量不是要求太高,精度也不是太高,所以我们综合考虑了一下以下的方案。2.2.1电机的选择方案一:采用步进电机作为该系统的驱动电机
13、。由于其转过的角度可以精确的定位,可以实现小车前进路程和位置的精确定位。虽然采用步进电机有诸多优点,步进电机的输出力矩较低,随转速的升高而下降,且在较高转速时会急剧下降,其转速较低,不适用于小车等有一定速度要求的系统,经综合比较考虑,我们放弃了此方案。方案二:采用直流电机。直流减速电机,即齿轮减速电机,是在普通直流电机的基础上,加上配套齿轮减速箱。齿轮减速箱的作用是,提供较低的转速,较大的力矩。同时,齿轮箱不同的减速比可以提供不同的转速和力矩。直流减速电机转动力矩大,体积小,重量轻,装配简单,使用方便。能够较好的满足系统的要求,因此我们选择了方案二。2.2.2电机驱动模块方案一:采用继电器对电
14、动机的开或关进行控制,通过开关的切换对小车的速度进行调整,此方案的优点是电路较为简单,缺点是继电器的响应时间慢,易损坏,寿命较短,可靠性不高。方案二:使用分立原件搭建电机驱动电路 使用分立原件搭建电机驱动电路造价低廉,在大规模生产中使用广泛。但分立原件H桥电路工作性能不够稳定,较易出现硬件上的故障,故我们放弃了这一方案。 方案三:使用L293D芯片驱动电机 L293D提供双向驱动电流高达600毫安,电压是从4.5 V至36 V的。两个设备是专为驱动等感性负载继电器,电磁阀,直流双极步进和马达,也可以给其他高电流/高电压提供电源负载。一片L293D可以分别控制两个直流电机,而且还带有控制使能端。
15、用该芯片作为电机驱动,操作方便,稳定性好,性能优良。输出电压最高可达36V,可以直接通过电源来调节输出电压;可以直接用单片机的IO口提供信号,而且带有使能端,方便PWM调速,电路简单,性能稳定,使用比较方便。另外L298N管脚不好焊接,L293D是标准DIP16封装,可以方便买到芯片底座,方便随时更换芯片2.3 电源模块及稳压模块方案一:采用交流电经直流稳压处理后供电 采用交流电提供直流稳压电源,电流驱动能力及电压稳定性最好,且负载对电源影响也最小。由于需要电线对小车供电,极大影响了壁障小车行动的灵活性及地形的适应能力,而且壁障小车极易把拖在地上的电线识别为障碍物,人为增加了不必要的障碍。故我
16、们放弃了这一方案。 方案二:采用蓄电池供电 蓄电池具有较强的电流驱动能力和较好的电压稳定性能,且成本低廉。可采用蓄电池经7812芯片稳压后给电机供电,再经过降压接7805芯片给单片机及其他逻辑单元供电。但蓄电池体积相对庞大,且重量过大,造成电机负载过大,不适合我们采用的PCB电路板车架,故放弃这个方案。方案三:采用干电池组进行供电 采用两节3.7V充电锂电池给电机驱动模块供电,并用集成稳压器7805将3.7V电压降压成5V给单片机和其他逻辑模块供电,干电池用电池盒封装,体积和重量较小,可以安装在小车下方,又不会影响小车的灵活性,故采用此方案。2.4 红外循迹模块方案一:用红外发射管和接收管自己
17、制作光电对管寻迹传感器。红外发射管发出红外线,当发出的红外线照射到白色的平面后反射,若红外接收管能接收到反射回的光线则检测出白线继而输出低电平,若接收不到发射管发出的光线则检测出黑线继而输出高电平。这样自己制作组装的寻迹传感器基本能够满足要求,但是工作不够稳定,且容易受外界光线的影响,因此我们放弃了这个方案。方案二:用光敏电阻组成光敏探测器。光敏电阻的阻值可以跟随周围环境光线的变化而变化。当光线照射到白线上面时,光线发射强烈,光线照射到黑线上面时,光线发射较弱。因此光敏电阻在白线和黑线上方时,阻值会发生明显的变化。将阻值的变化值经过比较器就可以输出高低电平。但是这种方案受光照影响很大,不能够稳
18、定的工作。因此我们考虑其他更加稳定的方案。方案三:用反射型光电探测器RPR220RPR220是一种一体化反射型光电探测器,其发射器是一个砷化镓红外发光二极管,而接收器是一个高灵敏度,硅平面光电三极管。RPR220采用DIP4封装,其具有如下特点:l 塑料透镜可以提高灵敏度。l 内置可见光过滤器能减小离散光的影响。l 体积小,结构紧凑。l 当发光二极管发出的光反射回来时,三极管导通输出低电平。此光电对管调理电路简单,工作性能稳定。用两个RPR220光电检测器分别附着于小车PCB板车架前侧的底部,可以很容易检测出小车是否循着黑线行走。2.5 红外避障模块方案一:使用光电对管探测 光电对关价格低廉,
19、性能稳定,但探测距离过近(一般不超过3cm),使得小车必须制动迅速。而我们由于采用普通直流电机作为原动力,制动距离至少需要10cm。因此我们放弃了这一方案。 方案二:使用视频采集处理装置进行探测 使用CCD实时采集小车前进路线上的图像并进行实时传输及处理,这是最精确的障碍物信息采集方案,可以对障碍物进行精确定位和测距。但是使用视频采集会大大增加小车成本和设计开发难度,而且考虑到我们小车行进转弯的精确度并未达到视频处理的精度,因而使用视频采集在实际应用中是个很大的浪费,所以我们放弃了这一方案。方案三:使用红外对管探测采用两只红外对管分别置于小车车头左右两侧。其安装简易,也可以检测到障碍物的存在,
20、可以确定小车在水平方向上是否会与障碍物相撞,并让小车及时做出转向反应。2.6 直流调速设计方案一:基于晶闸管作为主电路的调速系统晶闸管的调速系统是采用分离元件设计的调速系统占用的空间大,控制角难于调整,且模拟器件的固有缺陷如:温漂、零漂电压等,导致电机的调速无法达到满意的结果。晶闸管的单向导电性,它不允许电流反向,给系统的可逆运行造成困难,性能较差,自动化控制程度差,调速过程较为复杂,不利于工业生产和小功率电路中采用。另一问题是当晶闸管导通角很小时,系统的功率因素很低,并产生较大的谐波电流,从而引起电网电压波动殃及同电网中的用电设备,造成“电力公害”。 方案二:基于PWM为主控电路的调速系统
21、与传统的直流调速技术相比较,PWM(脉宽调制技术)直流调速系统具有较大的优越性:主电路线路简单,需要的功率元件少;开关频率高,电流容易连续,谐波少,电机损耗和发热都较小;低速性能好,稳速精度高,因而调速范围宽;系统频带宽,快速响应性能好,动态抗干扰能力强;主电路元件工作在开关状态,导通损耗小,装置效率高。PWM信号的产生通常有两种方法:一种是软件的方法;另一种是硬件的方法。基于NE555,SG3525等一系列的脉宽调速系统:此种方式采用NE555作为控制电路的核心,用于产生控制信号。NE555产生的信号要通过功率放大才能驱动后级电路8。NE555、SG3525构成的控制电路较为复杂,且智能化、
22、自动化水平较低,在工业生产中不利于推广和应用。基于单片机类由软件来实现PWM:在PWM调速系统中占空比D是一个重要参数在电源电压不变的情况下,电枢端电压的平均值取决于占空比D的大小,改变D的值可以改变电枢端电压的平均值从而达到调速的目的。改变占空比D的值有三种方法:A、定宽调频法:保持不变,只改变t,这样使周期(或频率)也随之改变。B、调宽调频法:保持t不变,只改变,这样使周期(或频率)也随之改变。C、定频调宽法:保持周期T(或频率)不变,同时改变和t前两种方法在调速时改变了控制脉冲的周期(或频率),当控制脉冲的频率与系统的固有频率接近时,将会引起振荡,因此常采用定频调宽法来改变占空比从而改变
23、直流电动机电枢两端电压。利用单片机的定时计数器外加软件延时等方式来实现脉宽的自由调整,此种方式可简化硬件电路,操作性强等优点。总之,PWM既经济、节约空间、抗噪性能强,是一种值得广大工程师在许多设计应用中使用的有效技术。且用软件实现非常容易。2.6.1小车差速运动模型的建立本设计中,采用的四轮结构,驱动系统采用两轮差速驱动方式,后两个为从动轮,只起到支撑平衡作用,在建模中可以忽略。假定左右两个驱动轮与地面之间没有滑动,也没有侧移,只是做纯粹的滚动,则机器人满足钢体运动规律14。图1所示XW,YW,O为世界坐标系,X,Y,O为移动坐标系,PX为机器人前进方向。图1 小坐标系移动机器人运动学主要处
24、理控制参数和系统在状态空间的运动两者之间的关系,它包括正运动学和逆运动学两个方面。正运动学解决如何根据移动机器人的速度来计算它的位姿或运动轨迹,当机器人的位姿(x,y,)时,差动轮式机器人的正运动学就是利用这连个差动轮的速度(,)来计算其位姿,通用公式计算如下 (1-1) (1-2) (1-3)其中, 和分别为左右轮的驱动速度,是两个驱动轮之间的距离,为移动机器人的驱动轮半径;移动机器人逆运动学解决如何控制轮子的速度以达到移动机器人所需的运动轨迹或位姿,即在已知位姿(x,y,)时,如果根据以上公式,求出两轮差动速度(,)。由于差动轮式驱动属于非完整性约束问题,故移动机器人逆运动学只有在特殊条件
25、下求解,其解往往不唯一,根据系统的需求,本文对移动机器人的运动学分析按两种情况分别进行。直线运动当差动轮式移动机器人左右两轮的速度大小相等且方向相同时,机器人的运动轨迹为直线,所图2所示。图2 直线运动原理图设t=0时,机器人移动坐标系X0,Y0,P0与世界坐标系XW,YW,O重合,经过时间后机器人运动到新的移动坐标系Xt,Yt,Pt,当机器人左右两轮的速度大小相等且方向相同(即=)时由公式(1-3)有:将其代入公式(1-1)(1-2)得:x(t)= ×t (1-4)y(t)=0 (1-5)由和(1-4) (1-5)式可知:机器人左右两轮的速度大小相等而方向相同时机器人的运动轨迹为直
26、线。、圆弧运动 当差动轮式机器人左右两轮的运动方向相同速度大小保持不变且差速度固定不变时,机器人的运动轨迹为圆弧。设t=0时,机器人移动坐标系X0,Y0,P0与世界坐标系XW,YW,O重合,经过时间后机器人运动到新的移动坐标系Xt,Yt,Pt,如图:图3 圆弧运动原理图当机器人左右两轮的速度差恒定,且方向保持不变时,由公式(1-3)有: (1-6)将和代入公式(1-6) 有: (1-7)求定积分得: (2-8)将和代入公式(1-2) 有: (1-9)由公式(1-9)有: (1-10)由公式(1-10)有: (1-11) (1-12)由上可知,机器人的运动轨迹为一圆弧,将上式转化为圆的标准方程:
27、由式(1-11)、(1-12)可知,当机器人左右两轮的运动方向相同、速度大小保持不变且速度固定不变时,机器人的运动轨迹为圆弧。圆心在世界坐标系YW的轴上。其圆心坐标为:(0,), 圆弧半径为:当机器人右轮速度大于左轮速度时,机器人的运动轨迹在世界坐标系的一、二象限;当机器人右轮速度小于左轮速度时,机器人的运动轨迹在世界坐标系的三、四象限。运动轨迹如图: a : b : 图4 圆弧运动2.6.2 运动控制参数的确定在本设计中,机器人的驱动轮和从动轮的半径都为40mm,两驱动轮之间的中心距为100mm。由于LPC2106的PWM输出的占空比与L293D输出驱动的电机转速成近似的线性关系,故可以根据
28、给定的速度要求,拟合出占空比的近似值,反过来,对于给定的占空比,同样可以得到相应的速度近似值。设拟合方程为: 其中:表示占空比表示小车直线的速度在这个方程中,有三个未知数a、b、c,在试验的条件下,分别取三组(,),则可以确定三个未知数的值。要求直线运动时, 把两路PWM输出的占空比赋予相同的值,即可得到与之对应速度的直行效果。要求圆弧运动时,从初始时刻给定机器人的车轮转速,将机器人的起始坐标设在0,0处,机器人做圆弧运动时,其圆心坐标为(0,), 圆弧半径为:按照机器人逆运动学原理,假设要使机器人按半径为R的圆弧运动,则根据R可以计算出机器人左右轮所需的速度和速度差。为此,取R=50cm进行分析。从cm可知,所以机器人的速度和速度差可以有多个解。下面讨论的情形。当时:两驱动轮间距离为100cm,则由,可得=,因而右轮的速度。根据拟合方程,可以得到对应的驱动右轮的PWM占空比。说明:对于给定的R,其速度和差速度解可以有多个,所以在左转弯时,假定,右转时则,就有对应的唯一差速度解。由于速度和和PWM的脉冲宽度成正比,所以可以在编程中用脉冲宽度来调节。第三章 硬件设计3.1 小车总体设计智能小车采用前轮驱动,前轮左右两边各用一个电机驱动,调整前面两个轮子的转速启停从而达到控制转向的目的,后轮是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论