版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、3.1.2用二分法求方程的近似解(教学设计)教学目标:知识与技能:通过具体实例理解二分法的概念及其适用条件,了解二分法是求方程近似解的常用方法,从中体会函数与方程之间的联系及其在实际问题中的应用过程与方法:能借助计算器用二分法求方程的近似解,并了解这一数学思想,为学习算法做准备情感、态度、价值观:体会数学逼近过程,感受精确与近似的相对统一教学重点:重点 通过用二分法求方程的近似解,体会函数的零点与方程根之间的联系,初步形成用函数观点处理问题的意识难点 恰当地使用信息技术工具,利用二分法求给定精确度的方程的近似解一、复习回础,新课引入:高次多项式方程公式解的探索史料由于实际问题的需要,我们经常需
2、要寻求函数的零点(即的根),对于为一次或二次函数,我们有熟知的公式解法(二次时,称为求根公式)在十六世纪,已找到了三次和四次函数的求根公式,但对于高于4次的函数,类似的努力却一直没有成功,到了十九世纪,根据阿贝尔(Abel)和伽罗瓦(Galois)的研究,人们认识到高于4次的代数方程不存在求根公式,亦即,不存在用四则运算及根号表示的一般的公式解同时,即使对于3次和4次的代数方程,其公式解的表示也相当复杂,一般来讲并不适宜作具体计算因此对于高次多项式函数及其它的一些函数,有必要寻求其零点的近似解的方法,这是一个在计算数学中十分重要的课题二、师生互动,新课讲解:1、二分法:上节(P88例1)课我们
3、已经知道,函数在区间(2,3)内有零点,问题是:如何找出这个零点呢?如果能够把零点所在的区间范围尽量缩小,那么在一定精确度的要求下,我们可以得到零点的近似值下面介绍一种求近似解的方法我们知道,函数的图象与直角坐标系中轴交点的横坐标就是方程的解,利用上节课学过的函数零点存在的条件,我们用逐步逼近的方法,来求方程的近似解(1)在区间(2,3)内,方程有解,取区间(2,3)中点2.5;(2)用计算器计算,因为,所以零点在区间内;(3)再取区间中点2.75,用计算器计算,因为,所以零点在区间内(4)重复上面的过程,在有限次重复相同步骤后,零点所在区间长度在一定精度控制范围内,零点所在区间内的任意一点都
4、可以作为函数零点的近似值,特别地,可以将区间端点作为零点的近似值本例中,把取中点和判断零点的过程,用表格列出(课本第89页表3-2)当精确度为0.01时,由于,所以,我们可将作为函数零点的近似值,也即方程根的近似值2 / 9对于在区间上连续不断且的函数,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法(bisection)给定精确度,用二分法求函数零点近似值的步骤如下:1)确定区间,验证,给定精确度;2)求区间的中点;3)计算;4)判断:(1)若,则就是函数的零点;(2)若,则令(此时零点);(3)若,则令(此时零点)5)判断:区间长度
5、是否达到精确度?即若,则得到零点近似值;否则重复25说明:由函数的零点与相应方程根的关系,我们可用二分法来求方程的近似解由于都是重复性的工作,所以可以通过设计一定的计算程序,借助计算器或计算机完成计算例1(课本P90例2)借助计算器或计算机用二分法求方程的近似解(精确到)小结:1) 结论:图象在闭区间,上连续的单调函数,在,上至多有一个零点2) 函数零点的性质从“数”的角度看:即是使的实数;从“形”的角度看:即是函数的图象与轴交点的横坐标;若函数的图象在处与轴相切,则零点通常称为不变号零点;若函数的图象在处与轴相交,则零点通常称为变号零点3) 用二分法求函数的变号零点二分法的条件·表
6、明用二分法求函数的近似零点都是指变号零点变式训练1:求方程x22x1的一个近似解(精确度0.1)解设f(x)x22x1.f(2)1<0,f(3)2>0,在区间(2,3)内,方程x22x10有一解,记为x0.取2与3的平均数2.5,f(2.5)0.25>0,2<x0<2.5;再取2与2.5的平均数2.25,f(2.25)0.437 5<0,2.25<x0<2.5;再取2.25与2.5的平均数为2.375,f(2.375)0.109 4<0,2.375<x0<2.5,再取2.375与2.5的平均数为2.437 5,f(2.437 5
7、)0.066 4>0.|2.3752.437 5|0.062 5<0.1,方程x22x1的一个精确度为0.1的近似解可取为2.437 5.点评对于求形如f(x)g(x)的方程的近似解,可以通过移项转化成求形如F(x)f(x)g(x)0的方程的近似解,然后按照二分法求函数零点近似值的步骤求之例2:已知函数在区间上是连续不断的曲线,判断下列结论,正确的是 若,则函数在内有且只有一个零点 若,则函数在内无零点 若在内有零点,则 若,则函数在内有零点 若,则函数在内有零点【解析】有条件,则函数在内可能不止一个零点,如有(3,3)内有三个零点;在下函数在内未必没有零点,如在(3,3)内有两个
8、零点;在内有零点,未必成立,如在(3,3)内有零点,但;注意端点问题,可能恰好使得0本题从多角度、多侧面考查对定理的理解,对培养学生思维的严密性很有帮助答案:变式训练2:(课本P92习题3.1 A组:NO:1)例3:已知函数,当为何值时,函数在R上有一个零点?两个零点?无零点?【解析】 当时,是一次函数,在R上有且只有一个零点;当时,是二次函数,其零点个数由的符号决定又,当时,无零点;当时,有一个零点;当时,有两个零点综上所述,当或时,函数有一个零点;当时,函数有两个零点;当时,函数没有零点变式训练3:函数的零点是和,求函数的零点解:由已知得是方程的两根,解得:由得:,即.故函数的零点是0.三
9、、课堂小结,巩固反思:1二分法的理论依据是什么?二分法的理论依据是:如果函数在闭区间上连续不断,且,那么一定存在,使2二分法的实施要点是什么?二分法寻找零点的过程是将一个含有零点的区间平分为两个小区间,判断哪个小区间内含有零点,再将该小区间平分,通过次的平分、判断,使零点存在于一个长度的小区间当适当大时,满足精确度的允许范围,于是小区间内的值可作为函数零点的近似值四、布置作业:A组:1下列函数中不能用二分法求零点的是()Af(x)3x1 Bf(x)x3 Cf(x)|x| Df(x)lnx答案C解析对于选项C而言,令|x|0,得x0,即函数f(x)|x|存在零点;当x>0时,f(x)>
10、;0,当x<0时,f(x)>0,f(x)|x|的函数值非负,即函数f(x)|x|有零点但零点两侧函数值同号,不能用二分法求零点2若函数yf(x)在R上递增,则函数yf(x)的零点(B)A至少有一个 B至多有一个 C有且只有一个 D可能有无数个3(2011·新课标全国)在下列区间中,函数f(x)ex4x3的零点所在的区间为()A. B. C. D.解析因为fe4×3e20,fe4×3e10,所以f(x)ex4x3的零点所在的区间为.答案C4.若函数f(x)=x3+x2-2x-2的一个正数零点附近的函数值用二分法计算,参考数据如下:那么方程x3+x2-2x
11、-2=0的一个近似根为 。(答案:1.437 5)5若函数f(x)在(1,2)内有一个零点,要使零点的近似值满足精确度为0.01,则对区间(1,2)至少二等分()A5次 B6次 C7次 D8次解析:设对区间(1,2)至少二等分n次,此时区间长为1,第1次二等分后区间长为,第2次二等分后区间长为,第3次二等分后区间长为,第n次二等分后区间长为.依题意得<0.01,n>log2100.由于6<log2100<7,n7,即n7为所求答案:C6.2014·北京卷 已知函数f(x)log2x,在下列区间中,包含f(x)的零点的区间是()A(0,1) B(1,2) C(2,4) D(4,)6C解析 方法一:对于函数f(x)log2x,因为f(2)2>0,f(4)0.5<0,根据零点的存在性定理知选C.7方程在区间上的根必定属于区间( B )ABCD8函数的零点所在的大致区间是( C )A(3,4) B(2,e) C(1,2) D(0,1)9已知函数f(x)x2xa在区间(0,1)上有零点,则实数a的取值范围是_解析函数f(x)x2xa在(0,1)上递增由已知条件f(0)f(1)<0,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 活动策划策划职责要求(2篇)
- 2024年度产品代理合同:某高端化妆品在中国区代理
- 法院起诉合同范例
- 2024年小学第九套广播操比赛评分细则(2篇)
- 彩钢简易合同模板
- 公司办公管理制度例文(2篇)
- 电子门施工合同范例
- 物流物业合同模板
- 劳务用工协议书合同完整版
- 二零二四年度旅游服务合作经营协议
- 桥梁板梁预制施工方案(完整版)
- 塔吊运输方案
- 色盲检测图(俞自萍第六版)
- 大学生心理健康2021-22-2学习通课后章节答案期末考试题库2023年
- 硝酸钾安全技术说明书MSDS
- 茶具知识介绍课件
- 电梯使用说明
- 第三单元《工具与技术》知识点-教科版六年级科学上册
- 危险化学品运输及一书一签培训
- TD-T 1056-2019 县级国土调查生产成本定额
- 出监教育内容2
评论
0/150
提交评论