版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、备课组长重诗林中心发言人张自石年 级冋周 次备课 日期2010 .8. 29.备课 题目1. 1正弦定理第几课时2学科长签名、内容及其解析1. 内容:正弦定理2. 解析:正弦定理是普通高中课程标准实验教科书必修 5中第一章解三角形的学习内容,比较系统地研究了解三角形这个课题。正弦定理紧跟必修 4 (包括三角函数与平面向量)之后,可以启发学生联想所学知识,运用平面向量的数量积连同三角形、三角函数的其他知识作为工具,推导出正弦定理。正弦定理是求解任意三角形的基础,又是学生了解向量的工具性和知识间的相互联系的的开端,对进一步学习任意三角形的求解、体会事物是相互联系的辨证思想均起着举足轻重的作用。通过
2、本节课学习,培养学生“用数学”的意识和自主、合作、探究能力。二、目标及其解析目标:(1)正弦定理的发现;(2)证明正弦定理的几何法和向量法;(3)正弦定理的简单应用。解析:先通过直角三角形找出三边与三角的关系,再依次对锐角三角形与钝角三角形进行探讨,归纳总结出正弦定理,并能进行简单的应用。三、教学问题诊断分析正弦定理是三角形边角关系中最常见、最重要的两个定理之一,它准确反映了三角形中各边与它所对角的正弦的关系,对于它的形式、内容、证明方法和应用必须引起足够的重视。 正弦定理要求学生综合运用正弦定理和内角和定理等众多基础知识解决几何问题和实际应 用问题,这些知识的掌握,有助于培养分析问题和解决问
3、题能力,所以一向为数学教育所重视。四、教学支持条件分析学生在初中已学过有关直角三角形的一些知识和有关任意三角形的一些知识,学生在高中已学过必修 4 (包括三角函数与平面向量),学生已具备初步的数学建模能力, 会从简单的实际问题中抽象出数学模型完成教学目标,是切实可行的。五、教学过程(一)教学基本流程(一)创设情境,引出课题在Rt ABC中,各边、角之间存在何种数量关系? 学生容易想到三角函数式子:(可能还有余弦、切的式子)b sinCc“ a si nAsi nBc 这三个式子中都含有哪个边长? 学生马上看到,是 c边,因为 那么通过这三个式子,边长a bcsin C 1c有几种表示方法?cs
4、in A si nBsinC 得到的这个等式,说明了在Rt 中,各边、角之间存在什么关系?(各边和它所对角的正弦的比相等)设计意图:以旧引新,打破学生原有认知结构的平衡状态境进行自我组织,促进认知发展.从直角三角形边角关系切入 , 过程.(二)探究正弦定理猜想:在任意的厶 ABC中 ,各边和它所对角的正弦的比相等 ,即:,刺激学生认知结构根据问题情符合从特殊到一般的思维asin Absin B sin C设计意图:鼓励学生模拟数学家的思维方式和思维过程,大胆拓广发展创造性思维能力,主动投入数学发现过程三角形分为锐角三角形、 直角三角形和钝角三角形, 对于直角三角形, 这个关系式是成立的,那么我
5、们现在是否需要分情况来证明此关系式? 设计意图:及时总结,使方向更明确,并培养学生的分类意识我们前面已经推导出那么能否把锐角三角形转化为直角三角形来求证? 可以构造直角三角形如何构造直角三角形?作高线(例如:作 CDL AB则出现两个直角三角形)将欲证的连等式分成两个等式证明,若先证明那么如何将A、B、a、在两个直角三角形在Rt bc中,cd= a sinB 在 Rt acdK cd= basin Absin Bb联系起来?Rt BCD与 Rt ACD中, CD是公共边:bsin Aa sinBbsin Abc sin A如何证明sin b sin C ?作高线AE! BC同理可证.设计意图:
6、把不熟悉的问题转化为熟悉的问题,引导启发学生利用已有的知识解决新的问题sin B此关系式能不能推广到任意三角形?解决类型:(1)已知三角形的任意两角与一边,可求出另外一角和两边;2)已知三角形的任意两边与其中一边的对角,可求出另外一边和两角。(四)目标检测若厶ABC为钝角三角形,同理可证明:sin A sin B sinC(三)例题分析,加深理解例题:在厶 ABC中,已知 C= 48.57 0 , A = 101.87 o ,AC= 2620m求AB.(精确到1米)解:B= 1800-A- C= 180 o- 48.57 o 101.87 o = 29.56 o由bc/ 口得cbsin Csi
7、n Bsi nCsin B2620 sin 48.57° sin 29.5603982正弦定理:a b csin A sinB sinC2R正弦定理推论1) a 2RsinA,b 2RsinB,2Rs inC正弦定理推论2) sin Aa2R,sinB2Rsi nCc2R1.一个三角形的两个内角分别是30°和45°,如果45°角所对的边长为8,那么30°角所对边的长是2.在 ABC 中,(1)已知 A 75o, B45o, c 3 2,则 a, b (2)已知 A 30o, B120o, b 12,则 a, c 3. 在厶ABC中,b4. 在
8、ABC 中,b5. 在 ABC 中,b(五)小结43,c32-2 , C60o,则 A c 3品,B 30o,则 a=2asinB,则 B(1)在这节课中,学习了哪些知识?正弦定理及其发现和证明,正弦定理的初步应用(2)正弦定理如何表述?a b csin Asin Bsin C(3)表达式反映了什么?指出了任意三角形中,各边与对应角的正弦之间的一个关系式班级姓名学号、学习目标(1) 正弦定理的发现;(2) 证明正弦定理的几何法和向量法;(3 )正弦定理的简单应用。、问题与例题问题1:在Rt ABC中,各边、角之间存在何种数量关系?问题2:这三个式子中都含有哪个边长?问题3:那么通过这三个式子,
9、边长 c有几种表示方法?问题4:得到的这个等式,说明了在Rt中,各边、角之间存在什么关系?问题5:那么能否把锐角三角形转化为直角三角形来求证?例1 (三)例题分析,加深理解例题:在厶 ABC中,已知 C= 48.57 0 , A = 101.87 o ,AC= 2620m求AB.(精确到1米) 三、目标检测1.一个三角形的两个内角分别是30o和45°,如果45°角所对的边长为8,那么30o角所对边的长是2.在 ABC 中,(1)已知 A 75°,B 45°,(2)已知 A 30°,B 120°,b 12,4.在5.在ABC 中,ABC
10、 中,ABC 中,43,c2-2 , C60°,则 A3, c 3、3 , B2asin B,贝U B C30°,则 a =3配餐作业一、基础题(A组)1、在厶 ABC 中,若 a= ,5 , b= . 15 , A=30°,则 c 等于()A 2 ,5 B 、. 5 C 、2,5或,5 D、以上结果都不对2. 在厶ABC中,一定成立的等式是()A.asi nA=bs inBB.ac°sA=bc°sBC.as in B=bsi nAD.ac°sB=bc°sA卄 sin A cos BcosC3.右则厶ABC为()abcA.等
11、边三角形B.等腰三角形C.有一个内角为30 °的直角三角形D.有一个内角为30°的等腰三角形4. ABC中,/A、/ B的对边分别为a,b,且/ A=60° , a、6,b 4,那么满足条件的厶 ABC ( )A.有一个解B.有两个解C.无解D.不能确定5. 在厶 ABC中,a = 2 3, b= 2 2 , B= 45°,贝U A 等于 .L206. 在厶 ABC中,若 c 10、. 2 , C 60 , a,则 A.3、巩固题(B组)7. 在厶ABC中, B=13f, C=l5°, a=5,则此三角形的最大边长为a8. 在锐角 ABC中,已知 A 2B,则的一取值范围是b119. 在厶ABC中,已知tanA, tanB,则其最长边与最短边的比为 2310. 已知锐角三角形的三边长分别为2、3、x,则x的取值范围是 .三、提高题(C组)11. 在 ABC中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江苏省南京市2024-2025学年高二上学期期中考试 历史 含解析
- 《普通植物病理学》笔记
- 【初中物理】《光的折射透镜》章末测试 2024-2025学年物理苏科版八年级上册
- 乳制品加工初步设计代可行性研究报告(图纸)
- 市容委党校毕业论文
- 牡丹江2024年07版小学5年级上册英语第二单元暑期作业
- 《校园规范汉字书写传承文化之美》倡议书4篇
- 2024统编版语文七年级上册第一单元测试卷 (含答案)
- 语用学知识点大全
- 口语交际(三)小题训练(原卷版)-2025年部编版中考语文一轮复习
- 炎德英才大联考2025届高三第二次模拟考试物理试卷含解析
- 幼儿园中班社会《兔子先生去散步》课件
- 人教课标解析新时代教育理念
- 2023年12月英语四级真题及答案-第2套
- 品牌授权收费合同模板
- DB41-T 2689-2024 水利工程施工图设计文件编制规范
- 【学案】夏商周时期的科技与文化导学案 2024~2025学年统编版七年级历史上册
- 空气动力学数值方法:有限体积法(FVM):离散化技术与数值通量
- 北师大版九年级物理全一册电子课本教材
- 生产管理培训课件
- 《正确对待外来文化》名师课件
评论
0/150
提交评论