高精度AD转换电路的设计(C题)_第1页
高精度AD转换电路的设计(C题)_第2页
高精度AD转换电路的设计(C题)_第3页
高精度AD转换电路的设计(C题)_第4页
高精度AD转换电路的设计(C题)_第5页
已阅读5页,还剩43页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、题目:高分辨率a/d转换电路的设计(c题)毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得 及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。作 者 签 名: 日 期: 指导教师签名: 日期: 使用授权说明本人完全了解 大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;

2、学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。作者签名: 日 期: 学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。作者签名: 日期: 年 月 日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规

3、定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权 大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。涉密论文按学校规定处理。作者签名:日期: 年 月 日导师签名: 日期: 年 月 日目 录高分辨率a/d转换电路的设计3design of the high-resolution a/d convertor circuit31 系统设计41.1 设计要求41.2 方案比较与论证41.2.1 总体方案论证41.2.2 系统电源模块方案论证71.2.3 模拟信号采集与处理模块方案论证91.2

4、.4 ad转换模块方案论证101.2.5 数字信号处理与输出模块方案论证131.2.6 单片机控制接口部分设计方案论证131.3 系统方案设计151.3.1 总体设计思路151.3.2 设计方案选择162 硬件电路设计172.1 系统电路供电稳压源172.2 精密基准电压源172.3 模拟可调电压源182.4 信号调理与采样保持电路202.5 积分与比较电路212.6 时钟信号产生电路222.7 计数器与输出接口电路222.8 定时器模块232.9 单片机最小系统及应用电路252.10 键盘模块262.11 显示模块273 软件设计273.1软件总体设计思路273.2 中断服务程序283.3

5、动态显示子程序293.4 连续转换1s子程序303.5 连续显示子程序313.6 频率显示子程序324 系统分析与理论计算334.1 系统工作原理334.1.1 系统初始化334.1.2 ad转换过程334.1.3 测量数据的显示与控制344.2 系统误差分析354.2.1 系统误差产生的原因354.2.2 系统误差的计算365 系统测试375.1测设环境与条件375.2 测试内容385.3 测试结果396 总结39高分辨率a/d转换电路的设计摘要:该高分辨率a/d转换电路采用双积分型转换技术,经采样保持,积分与比较电路完成电压-时间转换,使用计数器,定时器控制转换过程,最终由计数器输出转换结

6、果。凌阳16位单片机对输出信号进行处理,存储与显示。模拟电压输入信号由自制0100mv连续可调电压源产生。通过光电耦合器实现了测量显示部分与ad转换电路的电气隔离。语音。该a/d转换电路具有转换精度高,控制简单等特点。关键词:a/d转换,双积分,电气隔离,lcd显示design of the high-resolution a/d convertor circuitabstract:the high-resolution a/d convertor circuit applies the double integral transformation technology, maintainin

7、g the converting results after the sampling and holding, voltage integral and comparatoring process, from the voltage - time reversal results; and then outputs the transformation result by the counter. the single-chip microcomputer controller spce061a can carry on processing to the output signal, th

8、e memory and the display. the analog input signal will be produced by the self-made 0100mv continual variable voltage source. the survey demonstration part and the ad converting circuit electrical is isolated through the photoelectricity coupler. this a/d converting circuit has the characteristics o

9、f high transformation precision, simple control propertis and so on.key words:a/d convert, double integral, electic isolation, lcd display 1 系统设计1.1 设计要求设计一个具有高分辨率a/d转换器,实现对模拟电压的测量和显示。系统组成框图如图1所示。图 1 高分辨率a/d转换电路功能框图基本要求如下:1 采用普通元器件(不允许使用任何专用a/d芯片)设计一个具有15位分辨率的a/d转换电路,转换速度不低于10次/s,线性误差小于1%;2 设计并制作一个具

10、有测量和显示功能的仪器或装置,将该a/d转换电路的结果显示出来,有转换结束信号,显示器可采用led或lcd;3 要求有一个a/d转换结束后的输出信号;4 自行设计一个可以从0100mv连续调节的模拟电压信号作为该系统的被测信号源,以便对a/d转换电路的分辨率进行测试。例如输入100mv电压时显示器显示值不低于32767。发挥部分要求如下:1 分辨率为16位,线性误差小于0.5%;2 转换速度不低于20次/s;3 将a/d转换电路与测量显示部分实现电气隔离;4 实现其他功能。1.2 方案比较与论证1.2.1 总体方案论证方案一:采用逐次渐进型模数转换方案。该方案属于反馈比较型的模数转换,通过da

11、转换器输出值与输入模拟信号有次序地进行比较,从而确定输出数字信号的各个位的值。其原理框图如2所示。启动转换后,控制逻辑电路首先把逐次比较寄存器(sar)的最高位置1,其它位置0,sar中的内容经da转换器转换后得到的电压值送入比较器中与输入模拟信号ui进行比较。比较的结果输出到sar,并在下一次比较前对最高位进行修正。接着,在时钟信号驱动下,sar中次高位置1,sar中的内容经da转换器转换后的电压值再次送入比较器中与ui进行比较,并在下一次比较前对次高位进行修正。这样sar中的各位从高到低不断置1,不断的送入da转换器进行转换,并把转换后值不断送入比较器中与ui进行比较,通过比较器的输出实现

12、对该位的修正。当完成sar中最低位的修正后,ad转换完成,这时sar中的值即为转换后的数字量。图 2 逐次渐进型模数转换原理逐次渐进型模数转换的精度取决于d/a转换器和sar的位数,位数越高,精度越好,但转换所需的时间也相应递增,n位转换需要n个时钟周期。该方案转换速度较高,转换时间约为几十微秒,最大转换位数可达18位;同时,其功耗相当低并且功耗可随采样速率而改变。但逐次渐进型的模数转换对比较器的要求非常高,该题目要求ad转换器达到16位的精度,从而比较器精度需达到0.01mv;考虑到高精度比较器芯片在短时间内难以购买,并且市场有限,该方案的实现有一定难度。方案二:采用并行比较型模数转换方案。

13、该方案属于非反馈比较型的模数转换,即为一种直接的转换方式。其将处理后的模拟电压信号予以量化,并将所得到的所有量化电平与各基准电压分量(由一个总的基准电压源经过电阻串的分压得到)进行并行比较,将比较结果再进行编码,从而给出了相应的数字信号输出。其原理框图如3所示。精密分压网络通过2n只精密电阻将基准电压源按等差递增的方式分压,然后使分压信号同时通过2n个比较器与输入模拟电压信号进行比较,输出比较结果再按一定的逻辑进行编码,生成n位的数字转换信号。该方案的主要优点在于转换速度快,它大大减少了转换过程的中间步骤,每一位数字代码几乎在同一时刻得到,因此,在所有的模数转换中,它的转换速度最快。其缺点是分

14、辨率不高,一般都在10位以下;同时精度较高时,功耗较大。这主要是受到了电路实现的影响,因为一个n位的并行转换器,需要2n个比较器和分压电阻,当n=10时,比较器的数目就会超过1000个,转换的精度越高,其电路的复杂程度便成倍增加。图 3 并行比较型模数转换原理方案三:采用双积分型模数转换方案。这种方法属于积分型模数转换,是一种经过中间变量间接转换的转换器,通过两次积分将输入的模拟电压转换成与其平均值成正比的时间间隔,与此同时,在此时间间隔内利用计数器对时钟脉冲进行计数,从而实现模数转换。其原理框图如4所示。开始时,计数器与定时器清零,控制逻辑控制模拟开关,将处理后的模拟信号送入积分电路进行积分

15、,同时计数器开始计数。当计数器计满归零时,定时器置1,控制逻辑使模拟开关合向基准电压源,使积分电路进行反向积分,同时计数器重新计数;随着反向积分过程的进行,其输出值归零时,比较器输出一逻辑电平停止计数器计数,这时计数器的计数值便是所转换成的数字信号,可以送入寄存器或输出。本方案性能比较稳定,精度较高,可以达到22位,同时转换电路输入端使用了积分器,由于积分电容的作用,所以能够大幅度抑止高频噪声,故抗干扰能力强,并且电路较为简单,易于实现。但是,该方案转换速度较慢,转换精度随转换速率的增加而降低。根据题目要求,ad转换的速度需达到20次/秒,考虑该方案,适当提高时钟信号的频率以及各级电路的响应速

16、率便能达到要求。图 4 双积分型模数转换原理基于以上论证,选择方案三,既能保证题目要求的精度,又能保证转换的速度,同时电路设计简单,抗干扰能力强。1.2.2 系统电源模块方案论证系统电源模块主要分为三部分,第一部分是系统电路供电稳压源,用于电路中芯片等的供电;第二部分是精密基准电压源,用于提供ad转换中的参考电压;第三部分是模拟可调电压源,完成题目中的系统测试功能。1.2.2.1 系统电路供电稳压源该系统既包括数字电路部分,也包括模拟电路部分,因而在供电系统设计上须充分考虑两部分的供电要求。方案一:采用串联反馈式稳压电路,利用输出电压的变化量由反馈网络取样经放大电路放大后去控制调整三极管的集电

17、发射极间的电压降,从而达到稳定输出电压的目的。其电路原理图如图5。此方案能达到一定的稳压精度,同时输出电流较高,但该稳压电路由纯模拟电路搭建而成,对单个器件的要求较为严格,而且在搭建中容易造成电路不稳定。图 5 串联反馈式稳压电路方案二:采用三端集成稳压器78xx系列作稳压器件组成稳压电路。三端式稳压器由启动电路、基准电压电路、取样比较放大电路、调整电路和保护电路等部分组成。其内部基准电压不受输入电压波动的影响,并且内部设计了减流式保护电路和过热保护电路,能很好得保证稳压值的稳定。稳压器应用电路如图6所示。其正常工作时,稳压器的输入、输出电压差为23v,其输出端能够直接输出所需的电压值,并联电

18、阻c1和c2用来实现频率补偿,防止稳压器产生高频自激振荡和抑制电路引入高频干扰,c3是电解电容,以减小稳压电源输出端由输入电源引入的低频干扰。该方案电路连接简单,采用集成器件使电路稳定性增强,同时稳压精度很好,输出电流为0.1a,可以满足系统供电要求。图 6 三端集成稳压器应用电路比较以上两种方案,采用方案二作为系统电路供电。1.2.2.2 精密基准电压源方案一:利用运算放大器构成可调直流基准电压源。原理图如7图所示,恒流源d1为稳压管d2供电,稳压管输出电压经过运算放大器负反馈而输出一稳压值。需要精确地选择r1和r2的值,以及低失调电压,低失调电流,低噪声,低漂移的集成运放以确保输出电压的精

19、度和稳定性。该方案由于电阻和运放的选取问题,可能造成输出误差,稳定性难以保证。同时,根据题目要求,基准电压源不需连续可调。图 7 运放构成基准电压源方案二:采用精密da转换器构成数控可编程基准电压源,从数字键盘输入的十进制数(即所需输出电压vo的数值), 在控制电路的控制下经编码器编码, 变为对应的bcd码,按从高位到低位的次序依次存入存储器,存储器的输出又作为da转换器的数据输入, 经过转换输出一电压值,再通过运算放大器的处理输出合适的基准电压。该方法经过da转换可以得到精度很高的基准电压,但其电路设计较为复杂,同时软件设计需占用一定的单片机资源,模块整体调试费时较多。方案三:利用基准电压源

20、模拟集成芯片,例如ad588、ad584、tl431。其外围硬件电路连接简便,应用方便,同时基准电压输出稳定性好,输出电压误差非常低。tl431精密可调基准电源有如下特点:稳压值从2.536v连续可调;参考电压源误差在±1.0%以内,低动态输出电阻,典型值为0.22,欧姆输出电流1.0100毫安;在适应温度范围内温度特性平坦,典型值为50ppm;低输出电压噪声。故其非常适合做基准电压源。基于以上论证,选择方案三,以便于灵活方便得获得高精度高稳定性基准电压源。1.2.2.3 模拟可调电压源方案一:使用高精度恒流源串接入一稳定性好的可调电阻器分压输出连续可调的微小电压值。该方案易于实现,

21、所使用的元器件(精密电阻,电位器,npn晶体三极管)能方便购买到,也有挑选合适元器件的余地;规模小,易于调试。但其使用时对各个器件精度要求很高,否则容易产生漂移,造成输出不稳定。方案二:采用稳压器件对一小电压值稳压,再输入运算放大器组成的比例运算电路实现可调电压值衰减,实现低伏电压值连续可调。比例运算电路采用串联反馈,其降低了输入电阻,经实验,其会使运算放大器在衰减增益较大时所输出的微小电压值不稳定,易受外界噪声影响。并且该方案的实现成本较高。基于以上讨论,采用方案一制作模拟可调电压源。1.2.3 模拟信号采集与处理模块方案论证该模块分为信号调理模块和采样保持模块。经过处理后的模拟信号便可以送

22、入ad转换模块进行转换。1.2.3.1信号调理模块由于ad转换电路输入电压为0100mv,故需要对信号进行前级放大和滤波等处理。方案一:采用精密仪用放大器ad620对毫伏级的电压信号进行精确放大。该集成运放不仅放大倍数精确,而且放大电路的接法简便,仅使用一个精密可调电阻接入两个rg端便可以实现11000倍的信号放大。故该运放适合于为该转换器的输入信号进行放大,可以减小产生在信号放大及上的系统误差。为防止上电噪声信号的干扰和转换器工作时外界的强信号干扰,保护后级电路,在放大器前后均连入合适的旁路电容。方案二:使用专用的信号调理电路或集成芯片。考虑到该电路的输入为较小的直流信号,ad转换器对信号也

23、没有特殊的要求,使用集成运放和电容便足以达到题目要求;同时,专用的信号调理电路成本较高。基于以上讨论,采用方案一经济而且高效地完成该模块功能。1.2.3.2 采样保持模块方案一:使用运算放大器和阻容元件搭建采样保持电路,电路原理如图8所示。该方案电路易于实现,可以根据设计要求灵活地调节电路的参数,方便调试;但与此同时,由于自行焊接阻容元件,其工作时容易对相关电路造成干扰,使系统电路工作不稳定,并且该电路本身的稳定性也难以保证。图 8 简易采样保持电路方案二:采用专用的采样保持芯片,如lf298或lf398。该方案由于使用集成芯片,一方面其自身的稳定性和采样精度可以保证,另一方面对其他电路及芯片

24、的干扰也相对较低。集成采样保持器lf398,采用了双结型场效应管技术,具有许多优良的特性,如工作电源范围宽,可在供电电压±5v±18v下工作;电压跟随时间短(<10s),下降率低;输出电压零点可调;高精度的直流误差(< 0.01%);低功耗等。并且其价格低廉,在国内应用非常广泛。综上考虑,采用方案二,以更好得对输入电压信号进行采样保持。1.2.4 ad转换模块方案论证本模块是该电路系统的核心部分,其实现了系统设计的基本要求,包括精密比较器模块,时钟信号模块,积分电路模块,计数器模块和定时器模块等几个部分。各部分的方案论证如下。1.2.4.1 时钟信号模块经估算,

25、要达到题目要求的转换频率,大于20次/s,即每次转换时间不超过50ms,根据双积分型模数转换原理,所需的时钟频率应在5mhz左右。方案一:采用单稳态触发器sn74121级联组成高频方波振荡器。可由三级单稳电路级联组成最高输出频率为7mhz的方波振荡器。该方案电路组成庞大且较为复杂,振荡电路对外界干扰信号敏感。方案二:由ttl非门组成简单振荡器。可构成环形振荡器如图9所示。经过rc值的调整,该振荡电路频率最高可达到5mhz以上。但由于阻容元件在长时间工作时会产生一定的误差,故输出频率稳定性不佳。图 9 ttl非门构成环形振荡器ttl门电路和阻容元件组成的多谐振荡器的优点是电路简单、易于调节。但是

26、,由于决定振荡频率的主要因素是电路达到转换电平的时间,所以振荡频率的精度和稳定度取决于门电路的阈值电压。因为阈值电压的离散性,以及易受电源电压和环境温度变化的影响,使振荡频率稳定度通常只有10-2数量级。方案三:采用ttl门电路组成晶体振荡器。在对频率精度和稳定度要求高的场合,通常采用晶体振荡器。石英晶体不但有较高的频率稳定性,而且由于品质因数高,还有极好的选频特性,使频率精度也很高。在振荡器中采用的石英晶体工作在串联谐振频率上,此时晶体阻抗最小,该频率的信号最容易通过;而对于其他频率的信号,晶体呈现高阻抗。从而实现了选频振荡,振荡频率稳定。其组成的电路原理图如图10所示。选择不同的石英晶体,

27、可以获得1mhz10mhz的方波输出。该电路即使不采用其他稳频措施,其稳频度也可达到数量级。图 10 ttl门电路组成晶体振荡器基于以上讨论,选择方案三产生精确稳定的时钟信号,供计数器进行精确计数。1.2.4.2 计数器模块方案一:利用普通的门电路和触发器搭建一个16位的加法计数器。该电路控制方便,但其电路庞大,不能实现系统的集约性,同时容易造成系统的不稳定,不利于调试。方案二:采用集成二进制同步加法计数器74ls161级联成16位计数器。74ls161是4位计数器,具有异步清零,同步置数和保持数据等功能。可以通过进位信号输出端直接级联到下一个4位计数器的计数脉冲输入端,再设置相应的控制端实现

28、16位加法计数功能。74ls161的输入响应频率的典型值为40mhz,完全可以满足本系统约5mhz的时钟信号输入;同时该方案级联使用方便,电路参数适应范围广。综上考虑,选择方案二。1.2.4.3 积分电路模块方案一:采用普通运算放大器op07构成积分器。op07是低输入失调电压的集成运放,具有低噪声,小温漂等特点。它的主要技术指标如下:输入失调电压为10v,输入失调电流为0.7na,输入失调电压温度系数为0.2v/。但经实验验证,该运放的调整比较繁琐,而且稳定程度不高。方案二:采用精密运放ad620构成积分电路。ad620内部含三级运放,前两级作差动放大,后一级起隔离作用,共模抑制比高,低频响

29、应特性良好,性能稳定;并且可调整输入失调电压,使用方便。用于积分电路中,可以大大提高积分过程的稳定性,提高ad转换的精度。由于积分电路是双积分型模数转换电路的核心部分,需要很高的精度和稳定性,故选择方案二。1.2.4.4 精密比较器模块方案一:采用集成比较器直接完成电压比较功能,如lm311及lm119、lm219、lm319。该系列比较器的电源电压是236v或±18v,输出电流大,可直接驱动ttl和led;同时,其速度较快,例如高速双比较器lm319的建立时间为80ns。但其最大输入失调电压可达到8mv,最大输入偏置电流为200na。lm311的建立时间为200ns,输入失调电压典

30、型值为2 mv,最大输入偏置电流仅有50na。方案二:使用精密运算放大器ad620。ad620是一种低功耗、高精度仪表放大器。它体积小,为8管脚的soic或dip封装;功耗低,最大供电电流仅为1.3ma。ad620具有很好的直流特性和交流特性,它的最大输入失调电压为50v,最大输入失调电压漂移为lv /,最大输人偏置电流为2.0na。在0.1hz10hz范围内输人电压噪声的峰一峰值为0.28v。放大倍数为1时其增益带宽为120khz,建立时间为15s。总之,ad620能确保高增益精密放大所需的低失调电压、低失调电压漂移和低噪声等性能指标。综合论证方案一和方案二,又考虑到比较器的建立时间对ad转

31、换精度的影响比较大,可以看出采用专用电压比较器更能符合题目要求,以芯片购买的难易程度决定选择lm311比较器模块,采用方案一。1.2.4.5 定时器模块方案一:使用555定时器辅助控制。555定时器是一种应用极为广泛的中规模集成电路。该电路使用灵活、方便,只需外接少量的阻容元件就可以构成单稳、施密特触发器和多谐振荡器,因而广泛用于信号的产生、变换、控制与检测。在该ad转换电路中,可以使用555定时器的单稳态工作方式。当计数器计满时,触发定时器输出一个延时一定的高电平脉冲,使其定时时间长于计数器从0直至计满所需的时间;从而该信号便可作为ad转换结束标志信号和转换初始化控制信号。该方案辅助了单片机

32、对ad转换电路的控制,同时,由于该定时器应用技术较为成熟,其稳定性也有一定保证,广泛见于各电子市场上。方案二:直接利用单片机完成定时与控制功能。将计数器的进位信号接入单片机的一个外部中断端口,当对输入模拟电压信号第一阶段积分完成后,计数器输出一高电平脉冲,由单片机中断查询的该信号,在执行相应的延时;延时结束后对ad转换部分执行读取转换值和初始化控制功能。该方案可以实现对ad转换过程较为流畅的控制,简化了外围电路,可以达到题目要求;但其不足之处在于,首先,其不利于将来ad转换器的封装使用,用户接口不友好,编程和控制不方便;其次,该方案需占用单片机的一个外部中断源,不利于单片机功能的扩展。故选择方

33、案一实现定时功能。1.2.5 数字信号处理与输出模块方案论证ad转换过程结束后,需要将转换后的结果输出到单片机中进行处理,需要保证数字信号处理与输出的准确性和稳定性;又考虑到题目要求将ad转换电路与测量显示部分实现电气隔离,从而消除单片机测量显示部分与ad转换电路共地而产生的相互影响,数字信号的输出可以首先通过光电耦合器件再接到数字信号接口。方案一:将计数器的计数并行输出端通过光电耦合器直接同单片机相连。74ls161具有数据保持功能,计数结束后,单片机接收到ad转换结束的信号,便直接从计数器端读取数据。由于计数器在其计数的同时并行输出端的值也在不断变化,如果其直接将输出信号经过光电耦合器接入

34、单片机的输入输出口,容易对单片机在不读入数据时的数据处理过程造成影响,也容易对电气隔离元件造成损坏。 方案二:将计数器的计数并行输出端通过光电耦合器接入一个锁存器,其输出端接入单片机的输入输出口,锁存器可由单片机控制信号直接控制。计数结束后,单片机发出一控制信号使能锁存器锁存信号并由单片机读入进行显示等的处理。基于以上论证,选择方案二。1.2.6 单片机控制接口部分设计方案论证该部分包括ad转换控制接口,人机对话界面接口两个部分。其中ad转换控制接口可以通过相应的程序代码实现ad转换的连续进行和特殊功能选择;人机对话界面接口包括键盘,显示等部分,可以完成转换结果的显示,ad转换的功能设置等。其

35、方案论证如下。1.2.6.1 单片机选型方案方案一:采用mcs51系列单片机。51系列单片机价格便宜,使用简单,开发软件以及硬件调试器型号众多,应用广泛而普遍。但51系列单片机ram,rom等资源少,中断系统功能不丰富,外围模块少;同时,指令周期也较长,运算速度较其他risc指令系统单片机慢。方案二:采用pic18f4620单片机。pic18f4620采用哈佛结构,以及risc指令系统,其具有丰富的i/o口资源,1k容量ram,64k的flash,内置a/d和eeprom,看门狗电路,倍频电路等丰富的外围模块;其一个指令周期是四个机器周期,运算速度快,完全能够满足系统要求。但由于其不是主流单片

36、机,价格比较高,购买不方便,使用也不广泛。方案三:采用凌阳16位单片机spce061a作为控制与数据处理核心。其具有体积小、集成度高、易扩展、可靠性高、功耗低、结构简单、中断处理能力强、开发灵活等特点,内嵌32k字闪存flash,处理速度高,适用于快速数据处理和数字语音等应用领域;也可以方便得进行外围设备的扩展。其内部结构框图如图11所示。由于本系统需要较一定的数据运算与处理,可用c语言比较容易的进行编程以完成相应功能。图 11 spce061a内核结构框图比较上述方案,选择方案三。1.2.6.2 ad转换控制接口ad转换电路中,需要单片机辅助控制来完成转换,控制内容主要有555定时器的定时脉

37、冲输出信号,作为ad转换完成的标志eoc;积分与比较电路中失调电压的初始化调整,计数器初始化清零(控制三个光电耦合器,具体方法见单元电路设计部分),作为ad转换器的启动信号start;以及锁存器锁存控制信号,作为ad转换器的输出使能信号oe。方案一:将控制线经过一定的逻辑,直接将单片机与ad转换电路相连接。该方案电路连接简单,但鉴于题目要求将ad转换电路与测量显示部分实现电气隔离,因此该方案不能满足题目要求。方案二:控制线经过光电耦合器接入单片机,以实现ad转换电路与测量显示部分的电气隔离,这样可以避免单片机测量显示部分与ad转换电路共地的相互影响,能达到题目要求。根据以上论证,选择方案二以达

38、到发挥部分的相应要求。1.2.6.3 键盘模块分析题目要求,选择4×4键盘,以便于将来系统功能的扩展。方案一:将4×4矩阵式键盘直接接入单片机的i/o口,按键信号由单片机扫描读取。该方案电路设计简单,硬件接口方便,但由于矩阵式键盘进行扫描工作的需要,将占用较多的i/o口,并且需要编写键盘的扫描程序与去抖程序,容易误码。方案二:采用通用可编程键盘和显示接口电路芯片8279管理键盘电路。8279可以实现对键盘和显示器的自动扫描,识别闭合键的键号,完成显示器动态显示,可以节省cpu处理键盘和显示器的时间,提高cpu的工作效率。但8279是总线型键盘和数码管显示器管理芯片,对于61

39、单片机来说编程比较复杂,而且为并行工作方式,占用相当多的i/o口,外围电路也相对复杂,不利于单片机其他功能的扩展。方案三:利用数码管驱动及键盘控制芯片ch451管理键盘电路。ch451是一个整合了数码管显示驱动和键盘扫描控制以及p监控的多功能外围芯片,其内置64 键键盘控制器,按键状态输入的下拉电阻和去抖动电路,并提供按键释放标志位,可供查询按键按下与释放。ch451同单片机进行串行通信,只占用较少的i/o口,节省资源。虽然编程相对复杂,但读取精确,方便控制。基于以上论证,采用方案三接入键盘模块。1.2.6.4 显示模块方案一:利用led数码管显示相应的数据。这种方法在软硬件设计上比较容易实现

40、,显示直观,并且可以降低设计成本。但显示界面不友好,只能显示一些简单的ascii码字符,显示的信息量十分的有限,数据信息辨认比较困难,不利于人机对话的顺利进行。方案二:使用并行lcd点阵液晶显示。lcd可显示中文,显示数据明确清晰,显示信息容量大,界面友好,有利于人机对话和系统操作控制。在本系统中,需要对一段时间内ad转换的数据进行连续显示,使用lcd可以利用滚屏方式将其依次显示出来,方便控制。不过本方案也提高了程本,增加了编程难度。方案三:采用串行lcd点阵液晶显示。该方案只占用3个单片机i/o口,大大节省了单片机资源,可以方便得再进行系统功能的扩展,但同时也提高了编程难度。考虑到ad转换并

41、行数据输出需占用16个单片机i/o口,故需要减少对其他外设i/o口的分配数量。虽然软件编写难度较大,但从系统设计的角度出发,使用该方案是完全必要的。综上考虑,选择方案三,以友好的界面和明确清晰的显示输出转换结果。1.3 系统方案设计1.3.1 总体设计思路该高分辨率a/d转换电路采取双积分型转换方式,通过信号产生,信号处理,采样保持,积分和比较,计数与定时,最后送入单片机完成转换结果的显示,同时,通过单片机也可以实现对a/d转换电路的控制。该系统的核心ad转换模块的数据输入输出接口有模拟电压信号输入端vx,参考电压输入端vref,16位数字数据输出端;控制接口有ad转换启动控制端start,转

42、换结束指示端eoc,输出允许端oe。系统原理框图如图12所示。图 12 高分辨率a/d转换电路设计原理框图1.3.2 设计方案选择各个模块最终设计方案如下:系统电路供电稳压源使用三端集成稳压器78xx系列作稳压器件组成稳压电路;精密基准电压源使用基准电压源模拟集成芯片ad588;模拟可调电压源采用镜像恒流源串入电阻分压方案;信号调理模块使用精密运放ad620作为放大器和旁路电容滤波;采样保持模块使用专用采样保持芯片lf398;时钟信号模块使用ttl门电路组成晶体振荡器; 计数器模块使用4片74ls161级联成为16位计数器;积分电路模块使用精密运放ad620接电容负反馈构成积分器;精密比较器模

43、块使用专用比较器芯片lm311;定时器模块使用定时器ne555p;数字信号处理与输出模块采用光电耦合器tlp521-4实现电气隔离功能以及锁存器74ls373实现数据锁存;单片机选用凌阳16位单片机spce061a;ad转换控制接口使用光电耦合器p521实现单片机与ad转换电路之间控制线路的电气隔离;键盘模块采用键盘控制芯片ch451管理的4×4键盘; 显示模块采用12864点阵液晶显示。2 硬件电路设计2.1 系统电路供电稳压源电源电路采用自制的+5v,±12v,±15v五路输出电源,以满足数字系统和模拟系统的供电需要。220v交流电通过变压器降压后,进行整流,

44、滤波,稳压而输出相应电压值。电路原理图如图13所示。图 13 系统电路供电稳压源该电源电路采用三段固定稳压器78和79系列,电压输出稳定,内部设计了减流式保护电路和过热保护电路,能保证其工作的稳定性。稳压器前后级并联电阻可以用来实现频率补偿,防止稳压器产生高频自激振荡和抑制电路引入高频干扰,最后一级并联入电解电容,以减小稳压电源输出端由输入电源引入的低频干扰。2.2 精密基准电压源该电路使用基准电压源芯片ad584构成输出基准电压为10v的基准电压源。电路原理图如图14所示。图 14 基准电压源电路2.3 模拟可调电压源模拟可调电压源由基本的镜像电流源经改进设计而成,经过各个元器件的精心选择,

45、调选性能稳定,符合系统要求的元器件进行组装焊接。其电路原理图如图15所示。图 15 镜像电流源原理基本恒流源电路如图16所示。图 16 基本恒流源电路设三极管基射极电压为ube,输出电流为ic1,基准电流为ir,则有 (2.1)此时,rc两端输出电压uo为 (2.2)若三极管的发射极分别接入电阻re0,re,则组成了比例电流源,依电路的对称性 (2.3)又根据晶体管发射结电压与发射极电流的近似关系可得 (2.4)由近似关系 (2.5)从而有 (2.6)本电路要求输出0100mv电压信号,信号较小,须将上述电路改为微电流源,可以短接图16中的re0,得到图17。图 17 微电流源电路依近似关系(

46、2.5)和(2.3)式,得到q1管集电极电流 (2.7)从(2.7)式可以看出,由于仅有几十毫伏或更小,因此只要几千欧的re,就可以得到几十微安的ic1。又据(2.6)得到 (2.8)从而可根据电路相关参数得到ic1的值,进而选择相应的串接分压电阻。本电路中,r取15k,re取275,可得到ic1的取值100a;再在q1管集电极串联一阻值为1 k的可调电阻器,便能在其两端输出0100mv电压信号。2.4 信号调理与采样保持电路信号调理与采样保持电路的调理部分包括放大电路和旁路滤波电路,其中集成运算放大器采用op07将输入的毫伏级电压放大100倍再接入一倒相器成为正电压输入;采样保持部分采用专用

47、采样保持芯片lf398,其输出端接ad转换电路的模拟电压输入信号vx。该电路原理如图18所示。图 18 信号调理与采样保持电路2.5 积分与比较电路积分电路由精密运放ad620和电容c1构成;比较电路采用专用比较器模拟集成芯片lm311。电路原理图如图19所示。图 19 积分与比较电路由于比较器存在输入失调电压,该电路中添加了自动补偿失调电路,主要由补偿电容和光电耦合开关u4、u5组成。在ad转换开始以前,u4和u5均导通,比较器输出端通过电容器c2接地,输入端通过电容器c1接地;从而对运放u1,设其失调电压为,c2两端电压为v2,有如下关系,即 (2.9)对比较器u2,设其失调电压为,c1两

48、端电压为v1,有类似关系,即 (2.10)可以看出,比较器的输入失调电压对积分电容c1充电,在补偿电容c2上,由与运放的输入失调电压极性相反,数值相同的电压对进行充电。当u4和u5断开时,开始进行ad转换,此时输入电压的积分是在运放输入失调电压基础上进行的,而且由于在补偿电容上已保持与失调电压极性相反的电压,所以在进行积分时能够被自动消除。需指出的是,补偿电容须选用泄漏电阻大的补偿电容,以防止其充电后电压值在ad转换结束前发生较大的改变。2.6 时钟信号产生电路采用ttl门电路组成晶体振荡器。电路原理图如图19所示。图 20 时钟信号产生电路在该电路中,与非门u1a和u1b可构成正反馈振荡器,

49、电容c1连接正反馈支路,晶振y1和耦合电容c2是串联选频网络,只有频率为晶体串联谐振频率fo的信号才能产生振荡输出,即电路振荡于fo。电路中电阻r1和r2是与非门u1a和u1b的偏置电阻,也可将r1和r2分别接地。电容c3用于防止寄生振荡,当晶体谐振频率为fo时,c3应选一固定值。 (2.11)该电路中晶振频率fo为6.000mhz,故c3取值为18pf。与非门u1c是缓冲输出级,起隔离作用。电容c2选用可变电容时,可以对输出频率进行微调。选择使用不同振荡频率的石英晶体,可获得1mhz10mhz的方波输出。即使不采用其他稳频措施,该电路其稳频度也可达到10-5数量级。2.7 计数器与输出接口电

50、路该部分电路由4片二进制同步加法计数器74ls161级联成16位计数器,计数结果通过光电耦合器接入到锁存器74ls373实现数据锁存。其电路原理图如图21所示。74ls161的清零端同积分比较电路中的光耦控制端作为ad转换器的转换启动信号start,由单片机直接控制,第一级计数器的时钟触发端由时钟信号输出端cp和比较器输出端co经与非门u5a接入,以后各级的时钟触发均由前级计数器的进位信号控制,其他控制信号接法如原理图所示。计数器的输出端通过16支光电耦合器同ad转换的测量显示部分实现电气隔离,以实现相应的题目要求。两锁存器的使能端接测量控制部分的数字低电平,使其在ad转换器工作期间始终有锁存

51、功能,锁存控制端作为ad转换器的输出允许端oe,由单片机控制;锁存器的输出端为ad转换器的数字信号出入端,可接入单片机的i/o口进行数据处理。图 21 计数器与输出接口电路2.8 定时器模块定时器模块采用ne555定时器,使其工作于单稳态工作方式,定时器触发工作后输出一个高电平定时脉冲。其电路原理图如图22所示。图 22 定时器电路从图22可以看出,按单稳态工作时,基本上仅需外部连接定时电阻和电容,除此之外,应将旁路电容接控制端5。当负触发脉冲加到触发输入端2时(其值应低于vcc/3,在本电路中vcc=+5v),定时器被触发,开始其定时循环。输出上升为高电平,其值近似为vcc-1.6v;与此同

52、时,电容c开始充电,以rc时间常数趋向vcc。当电容c上电压vc充电达到2/3vcc时,暂稳态结束,输出恢复到近似为零。定时器等待下一个触发脉冲的到来。其触发时序图如图23所示。图 23 555定时器触发时序图在该系统中,当计数器计数满时,其产生一高电平脉冲,经反相器接入555定时器的触发端,定时器开始定时,输出端变成高电平,该高电平将控制模拟开关切换负参考电压输入积分电路,设定其计时时间长于计数器由0计到满所需时间;计时结束后输出恢复低电平,该下降沿或低电平信号可分别接入单片机输入输出口,作为一次ad转换结束信号eoc,通知单片机进行数据处理。2.9 单片机最小系统及应用电路在该系统中,使用

53、凌阳16位单片机spce061a完成ad转换结果的处理和对ad转换器的控制。其最小系统原理图如图24所示。图 24 spce061a最小系统在本系统中所使用的单片机资源有:a0-a15:16位数字信号输入;b0: 键盘控制芯片ch451串行时钟信号dclk输出口;b1: 键盘控制芯片ch451串行数据输入信号din输出口;b2: 键盘控制芯片ch451装载信号load输出口;b3: 键盘控制芯片ch451串行数据输出信号dout输入口。b8: lcd点阵液晶显示器片选控制输出; b9: lcd点阵液晶显示器串行数据输出;b10:lcd点阵液晶显示器串行时钟输出;b13:ad转换结束指示信号eo

54、c输入;b14:ad转换输出允许信号oe输出;b15:ad转换启动信号start输出。其中ch451的串行数据输出端占用单片机的一个外部中断ext2,以实现其串口通信功能。2.10 键盘模块键盘采用键盘控制芯片ch451管理,对于4×4键盘,仅分别使用了4条键盘扫描输出口dig0-dig3和输入口seg0-seg3完成扫描键盘功能。串行输入输出口,数据装载接口和串行时钟口分别接入单片机的i/o口b0-b3,其中串行数据输出信号作为单片机的一个外部中断源。电路原理图如图25所示。图 25 键盘电路ch451扫描键盘时,dig7dig0 引脚按照dig0至dig7 的顺序依次输出高电平,

55、其余7个引脚输出低电平;seg7seg0引脚的输出被禁止,当没有键被按下时,seg7seg0都被下拉为低电平;当有键被按下时,对应行变为高电平。为了防止因为按键抖动或者外界干扰而产生误码,ch451实行两次扫描,只有当两次键盘扫描的结果相同时,按键才会被确认有效。若ch451检测到有效的按键,则记录下该按键代码,并通过dout引脚产生低电平有效的键盘中断,此时单片机可以通过串行接口读取按键代码;在没有检测到新的有效按键之前,ch451 不再产生任何键盘中断。在该系统中,根据题目设计要求共定义使用了5个按键功能。分别为转换开始与动态显示键,能控制开始进行ad转换,并将该瞬间模拟电压值的转换结果输入lcd显示,并将此过程循环执行;连续转换键,控制单片机在给定的时间段内连续进行ad转换,并将转换结果存入存储器,同时对转换频率进行计算;连续显示键,当单片机完成对转换结果的连续读取与存储后,按下该键实现所存储结果的滚屏输出,并最终显示转换频率;转换频率显示键,在按连续转换键之后,按此键能够将ad转换频率输出显示;转换停止键,在转换控制结束后,按此键可以恢复ad转换电路的初始化状态,并清除先前存储和显示的转换结果,等待用户下一次操作。2.11 显示模块显示采用12864点阵

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论