




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、§8.1 椭圆及其标准方程 一、教学目标1.知识教学点使学生理解椭圆的定义,掌握椭圆的标准方程的推导及标准方程2.水平训练点通过对椭圆概念的引入与标准方程的推导,培养学生分析探索水平,增强使用坐标法解决几何问题的水平3.学科渗透点通过对椭圆标准方程的推导的教学,能够提升对各种知识的综合使用水平二、教材分析1重点:椭圆的定义和椭圆的标准方程(解决办法:用模型演示椭圆,再给出椭圆的定义,最后加以强调;对椭圆的标准方程单独列出加以比较)2难点:椭圆的标准方程的推导(解决办法:推导分4步完成,每步重点讲解,关键步骤加以补充说明)3疑点:椭圆的定义中常数加以限制的原因(解决办法:分三种情况说明
2、动点的轨迹)三、活动设计提问、演示、讲授、详细讲授、演板、分析讲解、学生口答四、教学过程(一)椭圆概念的引入前面,大家学习了曲线的方程等概念,哪一位同学回答:问题1:什么叫做曲线的方程?求曲线方程的一般步骤是什么?其中哪几个步骤必不可少?对上述问题学生的回答基本准确,否则,教师给予纠正这样便于学生温故而知新,在已有知识基础上去探求新知识提出这个问题以便说明标准方程推导中一个同解变形问题2:圆的几何特征是什么?你能否可类似地提出一些轨迹命题作广泛的探索?一般学生能回答:“平面内到一定点的距离为常数的点的轨迹是圆”对同学提出的轨迹命题如:“到两定点距离之和等于常数的点的轨迹”“到两定点距离平方差等
3、于常数的点的轨迹”“到两定点距离之差等于常数的点的轨迹”教师要加以肯定,以鼓励同学们的探索精神比如说,若同学们提出了“到两定点距离之和等于常数的点的轨迹”,那么动点轨迹是什么呢?这时教师示范引导学生绘图:取一条一定长的细绳,把它的两端固定在画图板上的f1和f2两点(如图2-13),当绳长大于f1和f2的距离时,用铅笔尖把绳子拉紧,使笔尖在图板上慢慢移动,就能够画出一个椭圆教师进一步追问:“椭圆,在哪些地方见过?”有的同学说:“立体几何中圆的直观图”有的同学说:“人造卫星运行轨道”等理解椭圆(幻灯片)在此基础上,引导学生概括椭圆的定义:平面内到两定点f1、f2的距离之和等于常数(大于|f1f2|
4、)的点的轨迹叫做椭圆这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距学生开始只强调主要几何特征到两定点f1、f2的距离之和等于常数、教师在演示中要从两个方面加以强调:(1)将穿有铅笔的细线拉到图板平面外,得到的不是椭圆,而是椭球形,使学生理解到需加限制条件:“在平面内”(2)这里的常数有什么限制吗?教师边演示边提示学生注意:若常数=|f1f2|,则是线段f1f2;若常数|f1f2|,则轨迹不存有;若要轨迹是椭圆,还必须加上限制条件:“此常数大于|f1f2|”(二)椭圆标准方程的推导1标准方程的推导由椭圆的定义,能够知道它的基本几何特征,但对椭圆还具有哪些性质,我们还一无所知,所以需要用坐标法先建
5、立椭圆的方程如何建立椭圆的方程?根据求曲线方程的一般步骤,可分:(1)建系设点;(2)点的集合;(3)代数方程;(4)化简方程等步骤(1)建系设点建立坐标系应遵循简单和优化的原则,如使关键点的坐标、关键几何量(距离、直线斜率等)的表达式简单化,注意充分利用图形的对称性,使学生理解到下列选择方法是恰当的以两定点f1、f2的直线为x轴,线段f1f2的垂直平分线为y轴,建立直角坐标系(如图2-14)设|f1f2|=2c(c0),m(x,y)为椭圆上任意一点,则有f1(-1,0),f2(c,0)(2)点的集合由定义不难得出椭圆集合为:p=m|mf1|+|mf2|=2a(3)代数方程(4)化简方程化简方
6、程可请一个反映比较快、书写比较规范的同学板演,其余同学在下面完成,教师巡视,适当给予提示:原方程要移项平方,否则化简相当复杂;注意两次平方的理由详见问题3说明整理后,再平方得(a2-c2)x2+a2y2=a2(a2-c2)为使方程对称和谐而引入b,同时b还有几何意义,下节课还要(ab0)关于证明所得的方程是椭圆方程,因教材中对此要求不高,可从略示的椭圆的焦点在x轴上,焦点是f1(-c,0)、f2(c,0)这里c2=a2-b22两种标准方程的比较(引导学生归纳)f1(-c,0)、f2(c,0),这里c2=a2-b2;f1(-c,0)、f2(0,c),这里c2=a2+b2,只须将(1)方程的x、y
7、互换即可得到教师指出:在两种标准方程中,a2b2,能够根据分母的大小来判定焦点在哪一个坐标轴上不同点标准方程oyxf2f1mf1f2moyx图形焦点坐标f1(c,0) , f2(c,0)f1(c,0) , f2(c,0)共同点定义a、b、c的关系a>b>0,b,c大小不确定。焦点的位置的判定x²,y²项中哪个分母大,焦点就在那一条轴上。(三)例题与练习例1 求适合下列条件的椭圆的标准方程: (1)两个焦点的坐标分别是(4,0)、(4,0),椭圆上一点p到两焦点距离的和等于10; (2)两个焦点的坐标分别是(0,2)、(0,2),并且椭圆经过点 解:(1)因为椭圆
8、的焦点在x轴上,所以设它的标准方程为 2a10,2c8, a5,c4 b2=a2c2=5242=9 所以所求椭圆的标准方程为 (2)因为椭圆的焦点在y轴上,所以设它的标准方程为 由椭圆的定义知, 又c=2, b2=a2c2104=6 所以所求椭圆的标准方程为 例2 已知b、c是两个定点,|bc|6,且abc的周长等于16,求顶点a的轨迹方程 分析:在解析几何里,求符合某种条件的点的轨迹方程,要建立适当的坐标系为选择适当的坐标系,常常需要画出草图 在图84中,由abc的周长等于16,|bc|6可知,点a到b、c两点的距离的和是常数,即|ab|ac|=166=10,因此,点a的轨迹是以b、c为焦点
9、的椭圆,据此可建立坐标系并画出草图(图84) 解:如图84,建立坐标系,使x轴经过点b、c,原点o与bc的中点重合 由已知|ab|ac|bc|=16,|bc|=6,有|ab|ac|=10, 即点a的轨迹是椭圆,且 2c6,2a16610, c3,a5,b2523216 但当点a在直线bc上,即y0时,a、b、c三点不能构成三角形,所以点a的轨迹方程是 注 求出曲线的方程后,要注意检查一下方程的曲线上的点是否都符合题意,如果有不符合题意的点,应在所得方程后注明限制条件 练习1、椭圆的a=_,b=_,c=_.焦点坐标是 。练习2、动点p到两个定点的距离之和为8,则p点的轨迹为( )a、椭圆 b、线
10、段f1f2 c、直线f1f2 d、不能确定练习3、椭圆上一点p到焦点f1的距离等于6,则点p到另一个焦点f2的距离是_。练习4、写出适合下列条件的椭圆的标准方程:(1)焦点在x轴上,a=4,b=1(2) 练习5、方程x2+ky2=2的曲线是焦点在y轴上的椭圆,则k的取值范围是( ) a、(0,+) b、(0,2) c、(1,+ ) d、(0,1)练习6、方程 表示焦点在x轴上的椭圆,则k的取值范围为 .引申:在平面直角坐标系中,已知abc中b(-3,0),c(3,0),且三边|ac|, |bc| , |ab|长依次成等差数列,求顶点a的轨迹方程。 (四)小结1定义:椭圆是平面内与两定点f1、f2的距离的和等于常数(大于|f1f2|)的点的轨迹2焦点:f1(-c,0),f2(c,0)f1(0,-c),f2(0,c)3.讨论了求椭圆标准方程的方法:注意:求出曲线的方程之后,要验证方程的曲线上的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 历年数学竞赛试题及答案
- 天然气案例试题及答案
- 动漫社考试题及答案
- 医学基础知识分析测试试题及答案
- 2025届贵州省凯里一中高三下学期第二次阶段性过关考试物理试题
- 有效降低母猪应激反应的技巧试题及答案
- 2025-2030中国电声产业行业发展状况及前景态势研究研究报告
- 2025-2030中国电动钢琴行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030中国电动液压手术台行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030中国电动手枪钻行业市场现状分析及竞争格局与投资发展研究报告
- 西北政法大学课件模板
- 碎石技术供应保障方案
- 第二单元大单元教学设计 2023-2024学年统编版高中语文必修上册
- 中国流行音乐的发展史
- 2024年3月四川省考公务员面试题及参考答案
- 战略性新兴产业政府引导基金发展策略与模式
- 财政基础知识培训课件
- 食品安全法律法规和标准要求
- 中西医结合诊疗方案
- 春季朋友聚餐邀请函
- 胸腔推注给药的护理
评论
0/150
提交评论