版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、全等三角形的判定全等三角形的判定(第二课时)(第二课时)s.a.s.教学目标l1、通过画图、操作、实验等教学活动,探、通过画图、操作、实验等教学活动,探索三角形全等的判定方法(索三角形全等的判定方法(s.a.s.)。l2、会用、会用s.a.s.判定两个三角形全等。判定两个三角形全等。l3、灵活地运用所学的判定方法判定两个三、灵活地运用所学的判定方法判定两个三角形全等,从而解决线段或角相等问题。角形全等,从而解决线段或角相等问题。自学指导l看课本,动手操作并思考一下问题:看课本,动手操作并思考一下问题:l1、动手操作:、动手操作:p69“做一做做一做”思考其后的思考其后的问题问题l2、探索:例、
2、探索:例1结论结论“等腰三角形的性质等腰三角形的性质”:等腰三角形的两个底角相等,你还能证:等腰三角形的两个底角相等,你还能证得哪些结论?得哪些结论?l3、动手操作:、动手操作:p71“做一做做一做”思考其后的思考其后的问题问题 做一做画一个三角形,使它的一个内角为画一个三角形,使它的一个内角为4545 , ,夹这个角夹这个角的一条边为厘米,的一条边为厘米,另一条边长为厘米另一条边长为厘米. .步骤:步骤:1.画一线段画一线段ab,使它等于使它等于4cm 2.画画 mab= 4545 3. 3.在射线在射线amam上截取上截取ac=3cm 4.ac=3cm 4.连结连结bc. bc. abc
3、abc就是所求做的三角形就是所求做的三角形温馨提示同桌两个同学自行约定:各画一个三角同桌两个同学自行约定:各画一个三角形,使它们具有相同的两条线段和一个形,使它们具有相同的两条线段和一个夹角夹角,比较一下,可以得出什么结论?,比较一下,可以得出什么结论?实践与探索实践与探索在在两个两个三角形中三角形中, ,如果有如果有两条边两条边及它们的及它们的夹角夹角对应对应相等相等,那么这两个三角形,那么这两个三角形全等全等(简记为(简记为s.a.s.s.a.s.) )结论:结论:温馨提示:例例2: 如图,已知如图,已知ab和和cd相交与相交与o, oa=ob, oc=od.说明说明 oad与与 obc全
4、等的理由全等的理由oa = ob(已知)已知)1 =2(对顶角相等)(对顶角相等)od = oc (已知)(已知)oad obc (s.a.s.) 解:在解:在oad 和和obc中中cbado21巩固练习巩固练习例题讲解例题讲解例例1如图,在如图,在abc中,中,abac,ad平分平分bac,求证:,求证:abd acdabcd证明证明: : badcad adadabd acd(s.a.s.)ad平分平分bac在在abd与与acd中中abacbadcad由由abd acd ,能证得,能证得bc,吗?即证得等腰三角形的两个底角相等这吗?即证得等腰三角形的两个底角相等这 条定理条定理例题推广例题
5、推广1、如图,在、如图,在abc中,中,abac,ad平分平分bac,求证:,求证: bc abcd证明证明: : badcad adadabd acd(s.a.s.)ad平分平分bac在在abd与与acd中中abacbadcadbc(全等三角形的对应角相等)(全等三角形的对应角相等)利用利用“s.a.s.”和和“全等三角形的对应角相等全等三角形的对应角相等”这两条这两条公理证明了公理证明了“等腰三角形的两个底角相等等腰三角形的两个底角相等”这条定理。这条定理。若题目的已知条件不变,你还能证得哪些结论?若题目的已知条件不变,你还能证得哪些结论?例题推广例题推广2、如图,在、如图,在abc中,中
6、,abac,ad平分平分bac,求证:,求证: bd=cdabcd证明证明: : bdcd(全等三角形的对应边相等)(全等三角形的对应边相等)这就说明了点这就说明了点d是是bc的中点,从而的中点,从而ad是底边是底边bc上的中线。上的中线。adbc adb adc (全等三角形的对应角相等)(全等三角形的对应角相等)又又 adb+ adc180 adb adc 90 adbc这就说明了这就说明了ad是底边是底边bc上的高。上的高。“三线合一三线合一”badcad adadabd acd(s.a.s.)ad平分平分bac在在abd与与acd中中abacbadcad巩固练习巩固练习 例例.点点m是
7、等腰梯形是等腰梯形abcd底底边边ab的中点,求证的中点,求证dm=cm,admbcm 点点m是等腰梯形是等腰梯形abcd底边底边ab的中点的中点ad=bc (等腰梯形的两腰相等)(等腰梯形的两腰相等) ab(等腰梯形的两底角相等)(等腰梯形的两底角相等) am=bm (线段中点的定义)(线段中点的定义)在在adm和和bcm中中 adbc, (已证已证) ab, (已证已证) ambm, (已证已证)amd bmc (s.a.s.) dm=cm(全等三角形的对应边相等)(全等三角形的对应边相等)admbcm (全等三角形的对应角相等)(全等三角形的对应角相等)学以致用:(1)如图如图3,已知,
8、已知adbc,adcb,要用边角边公,要用边角边公理证明理证明abc cda,需要三个条件,这三个,需要三个条件,这三个条件中,已具有两个条件,一是条件中,已具有两个条件,一是adcb(已知已知),二是二是( )( );还需要一个条件;还需要一个条件( )( )(这个这个条件可以证得吗?条件可以证得吗?)(2)如图如图4,已知,已知abac,adae,12,要用边角边公理证明要用边角边公理证明abd ace,需要满足的三个条件中,已具有两个条件:需要满足的三个条件中,已具有两个条件:( )( ),( )( )(这个条件可以证得吗?这个条件可以证得吗?)例:小兰做了一个如图所示的风筝,其中例:小兰做了一个如图所示的风筝,其中edh=fdh, ed=fd edh=fdh, ed=fd ,将上述条件标注,将上述条件标注在图中,小明不用测量就能知道在图中,小明不用测量就能知道eh=fheh=fh吗?吗?与同桌
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版劳动合同主体变更及员工工资支付方式协议3篇
- 2025年度重要部门安全防范监控系统集成合同2篇
- 二零二五年度医疗卫生机构护士短期劳动合同范本2篇
- 全科医生岗位实习报告
- 船舶电站课程设计
- 二零二五年度养老产业营业执照租赁及服务质量保障合同3篇
- 2024年销售代理权协议9篇
- 2025年度授权委托书(含数据分析和报告制作)3篇
- 营销课程设计案例
- 2025年虚拟现实技术产品购销与授权合同3篇
- 2022年高考全国甲卷语文试题评讲课件55张
- 欠条(标准模版)
- 项目财务核算业务蓝图
- 8.台球助教速成培训手册0.9万字
- 深圳京基·KKmall市场考察报告(45页
- 零缺陷与质量成本
- 国家开放大学电大本科《西方社会学》2023-2024期末试题及答案(试卷代号:1296)
- JBT5323-91立体仓库焊接式钢结构货架 技术条件
- 60m3卧式液化石油气储罐设计
- 命题多维细目表()卷
- 安徽省书法家协会会员登记表
评论
0/150
提交评论