下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、反比例函数中的面积问题重点:性质的灵活运用; 难点:函数知识的综合应用,通过面积问题体会数形结合思想教学过程:例1 :如图,若点p是反比例函数 图象上一点,则它与坐标轴围成的矩形面积是 结论:过双曲线上任意一点作x轴、y轴的垂线,所得矩形的面积1.过双曲线 上任一点分别作x轴、y轴的垂线段,与x轴、y轴围成的矩形面积为12,则反比例函数解析式是 。2.过双曲线 上任一点分别作x轴、y轴的垂线段,与x轴、y轴围成的矩形面积为8,则反比例函数解析式是 。3. 双曲线 图像在一、三象限,过图像上任一点分别作x轴、y轴的垂线段,与x、y轴围成的矩形面积为6,则反比例函数解析式是 。4.如图,点a在双曲
2、线 上,点b在双曲线 上,abx轴,分别过点a、b向x轴作垂线,垂足分别为d、c,则矩形abcd的面积是 . 5.如图,a,b是双曲线 上的点,分别经过a,b两点向x轴、y轴作垂线段,若 . 例2:点p(m,n)是反比例函数 图象上的任意一点,pdx轴于d,则pod的面积为 结论:过双曲线上任意一点作x轴或y轴的垂线,与原点相连所得三角形的面积1.如图:点a在双曲线 上,abx轴于b, 且aob的面积saob=2,则k= 。2.如图,点p是双曲线一支上的一点, pdx轴于d,点c在y轴上,若pcd的面积为3,则这个反比例函数的解析式是 。3.如图,正比例函数 y= k x ( k 0)与反比例
3、函数 的图象交于a、c两点,abx轴于b, cd x轴于d,则 4. 如图,直线ab交y轴于点c,与双曲线交于a、b两点,p是线段ab上的点(不与a、b重合),q为线段bc上的点(不与b、c重合),过点a、p、q分别向x轴作垂线,垂足分别为d、e、f,连接oa、op、oq,设aod的面 积为s1、poe的面积为s2、 qof的面积为s3,则用“”连接s1, s2, s3 5. 两个反比例函数 和 在第一象限内的图象如图所示,点p在 的图象上,pcx轴于点c,交 的图象于点a,pdy轴于点d,交 的图象于点b,当点p在 的图象上运动时, odb与oca的面积相等; 四边形paob的面积不会发生变化; opb与opa的面积相等 pa与pb始终相等 当点a是pc的中点时, 点b一定是pd的中点 其中一定正确的是 6. 如图,已知双曲线 经过长方形oced的边ed的中点b,交ce于点a,若四边形oaeb的面积为2,则k的值为 7.如图,已知双曲线 经过直角三角形oab斜边oa的中点d,且与直角边ab相交于点c若点a的坐标为(-6,4),则aoc的面积为 ( ) a12 b9 c6 d4 8.反比
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 西京学院《建筑装饰材料及施工工艺》2023-2024学年第一学期期末试卷
- 第六首古诗《书湖阴先生壁》
- 西京学院《工程材料与热处理》2023-2024学年第一学期期末试卷
- 西华师范大学《中学数学教材分析》2022-2023学年第一学期期末试卷
- 西华师范大学《艺术思潮与流派》2023-2024学年第一学期期末试卷
- 西华师范大学《文化人类学》2023-2024学年第一学期期末试卷
- 西华师范大学《企业管理学》2022-2023学年第一学期期末试卷
- 西华师范大学《工程制图与打印》2022-2023学年第一学期期末试卷
- 西昌学院《影视戏剧鉴赏》2022-2023学年第一学期期末试卷
- 西昌学院《物联网工程实训》2022-2023学年期末试卷
- 检伤分类课件
- 柿单宁功能成效及其产品介绍综述
- (新版)重症专科护士考试题库(含答案)
- 监理情况汇报(模板)
- 《诗经》两首-完整版课件
- 缺铁性贫血 图文 优质课件
- 商务部绩效考核表
- 无犯罪记录证明书申请表模板(通用)
- 钢结构可行性分析报告
- 高中地理 选必一《自然环境的整体性》第二课时-教学设计
- 我的故乡-德江课件
评论
0/150
提交评论