外文翻译--小波分析在信号处理中的应用_第1页
外文翻译--小波分析在信号处理中的应用_第2页
外文翻译--小波分析在信号处理中的应用_第3页
外文翻译--小波分析在信号处理中的应用_第4页
外文翻译--小波分析在信号处理中的应用_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、毕业设计(论文)外文资料翻译 专 业: 班 级: 姓 名: 学 号: 指导教师评语: 签名: 年 月 日一 小波研究的意义与背景在实际应用中,针对不同性质的信号和干扰,寻找最佳的处理方法降低噪声,一直是信号处理领域广泛讨论的重要问题。目前有很多方法可用于信号降噪,如中值滤波,低通滤波,傅立叶变换等,但它们都滤掉了信号细节中的有用部分。传统的信号去噪方法以信号的平稳性为前提,仅从时域或频域分别给出统计平均结果。根据有效信号的时域或频域特性去除噪声,而不能同时兼顾信号在时域和频域的局部和全貌。更多的实践证明,经典的方法基于傅里叶变换的滤波,并不能对非平稳信号进行有效的分析和处理,去噪效果已不能很好

2、地满足工程应用发展的要求。常用的硬阈值法则和软阈值法则采用设置高频小波系数为零的方法从信号中滤除噪声。实践证明,这些小波阈值去噪方法具有近似优化特性,在非平稳信号领域中具有良好表现。小波理论是在傅立叶变换和短时傅立叶变换的基础上发展起来的,它具有多分辨分析的特点,在时域和频域上都具有表征信号局部特征的能力,是信号时频分析的优良工具。小波变换具有多分辨性、时频局部化特性及计算的快速性等属性,这使得小波变换在地球物理领域有着广泛的应用。随着技术的发展,小波包分析(Wavelet Packet Analysis)方法产生并发展起来,小波包分析是小波分析的拓展,具有十分广泛的应用价值。它能够为信号提供

3、一种更加精细的分析方法,它将频带进行多层次划分,对离散小波变换没有细分的高频部分进一步分析,并能够根据被分析信号的特征,自适应选择相应的频带,使之与信号匹配,从而提高了时频分辨率。小波包分析(wavelet packet analysis)能够为信号提供一种更加精细的分析方法,它将频带进行多层次划分,对小波分析没有细分的高频部分进一步分解,并能够根据被分析信号的特征,自适应地选择相应频带,使之与信号频谱相匹配,因而小波包具有更广泛的应用价值。利用小波包分析进行信号降噪,一种直观而有效的小波包去噪方法就是直接对小波包分解系数取阈值,选择相关的滤波因子,利用保留下来的系数进行信号的重构,最终达到降

4、噪的目的。运用小波包分析进行信号消噪、特征提取和识别是小波包分析在数字信号处理中的重要应用。二 小波分析的发展与应用小波包分析的应用是与小波包分析的理论研究紧密地结合在一起的。近年来,小波包的应用范围也是越来远广。小波包分析能够把任何信号映射到一个由基本小波伸缩、平移而成的一组小波函数上去。实现信号在不同时刻、不同频带的合理分离而不丢失任何原始信息。这些功能为动态信号的非平稳描述、机械零件故障特征频率的分析、微弱信号的提取以实现早期故障诊断提供了高效、有力的工具。(1)小波包分析在图像处理中的应用 在图像处理中,小波包分析的应用是很成功的,而这一方面的著作和学术论文也特别多。二进小波变换用于图

5、像拼接和镶嵌中,可以消除拼接缝。利用正交变换和小波包进行图像数据压缩。可望克服由于数据压缩而产生的方块效应,获得较好的压缩效果。利用小波包变换方法可进行边缘检测、图像匹配、图像目标识别及图像细化等。(2)小波包分析在故障诊断中的应用 小波包分析在故障诊断中的应用已取得了极大的成功。小波包分析不仅可以在低信噪比的信号中检测到故障信号,而且可以滤去噪声恢复原信号,具有很高的应用价值。小波包变换适用于电力系统故障分析,尤其适用于电动机转子鼠笼断条以及发电机转子故障分析。用二进小波Mallat算法对往复压缩机盖振动信号进行分解和重构,可诊断出进、排气阀泄漏故障。利用小波包对变速箱故障声压信号进行分解,

6、诊断出了变速箱齿根裂纹故障等。(3)小波包分析在语音信号处理中的应用语音信号处理的目的是得到一些语音参数以便高效地传输或存储。利用小波包分析可以提取语音信号的一些参数,并对语音信号进行处理。小波包理论应用在语音处理方面的主要内容包括:清浊音分割、基音检测、去躁、重建与数据压缩等几个方面。小波包应用于语音信号提取、语音台成语音增加波形编码已取得了很好的效果。 三 基础知识介绍近年来,小波理论得到了非常迅速的发展,而且由于其具备良好的时频特性,实际应用也非常广泛。这里希望利用小波的自身特性,在降低噪声影响的同时,尽量保持图像本身的有用细节和边缘信息,从而保证图像的最佳效果。小波合成连续小波变换是一

7、种可逆的变换,只要满足方程2。幸运的是,这是一个非限制性规定。如果方程2得到满足,连续小波变换是可逆的,即使基函数一般都是不正交的。重建可能是使用下面的重建公式:公式1小波逆变换公式其中C_psi是一个常量,取决于所使用的小波。该重建的成功取决于这个叫做受理的常数,受理满足以下条件:公式2受理条件方程这里 psihat(xi) 是 FT 的psi(t),方程2意味着psihat(0) = 0,这是:公式3如上所述,公式3并不是一个非常严格的要求,因为许多小波函数可以找到它的积分是零。要满足方程3,小波必须振荡。 连续小波变换连续小波变换作为一种替代快速傅里叶变换办法来发展,克服分析的问题 。小

8、波分析和STFT的分析方法类似,在这个意义上说,就是信号和一个函数相乘,它的小波,类似的STFT的窗口功能,并转换为不同分段的时域信号。但是,STFT和连续小波变换二者之间的主要区别是:1、Fourier转换的信号不采取窗口,因此,单峰将被视为对应一个正弦波,即负频率是没有计算。 2、窗口的宽度是相对于光谱的每一个组件变化而变化的,这是小波变换计算最重要的特征。 连续小波变换的定义如下:公式4从上面的方程可以看出,改变信号功能的有两个变量,和s,分别是转换参数和尺度参数。psi(t)为转化功能。 小波包分析的基本原理目前大多数数字图像系统中,输入图像都是采用先冻结再扫描方式将多维图像变成一维电

9、信号,再对其进行处理、存储、传输等加工变换。最后往往还要在组成多维图像信号,而图像噪声也将同样受到这样的分解和合成。噪声对图像信号幅度、相位的影响非常复杂,有些噪声和图像信号是相互独立不相关的,而有些则是相关的,并且噪声本身之间也可能相关。因此要有效降低图像中的噪声,必须针对不同的具体情况采用不同方法,否则就很难获得满意的去噪效果。一般图像去噪中常见的噪声有以下几种:1) 加性噪声:加性噪声和图像信号强度是不相关的,如图像在传输过程中引进的“信道噪声”电视摄像机扫描图像的噪声等。这类带有噪声的图像可看成是理想的没有被噪声“污染”的图像与噪声。2) 乘性噪声:图像的乘性噪声和图像的加性噪声是不一

10、样的,加性噪声和图像信号强度是不相关的,而乘性噪声和图像信号是相关的,往往随着图像信号的变化而发生变化,如飞点扫描图像中的噪声、电视扫描光栅、胶片颗粒噪声等。3) 量化噪声:量化噪声是数字图像的主要噪声源,它的大小能够表示出数字图像和原始图像的差异程度,有效减少这种噪声的最好办法就是采用按灰度级概率密度函数选择量化级的最优量化措施。4) “椒盐”噪声:此种噪声很多,例如在图像切割过程中引起的黑图像上的白点、白图像上的黑点噪声等,还有在变换域引入的误差,在图像反变换时引入的变换噪声等。实际生活中还有多种多样的图像噪声,如皮革上的疤痕噪声、气象云图上的条纹噪声等。这些噪声一般都是简单的加性噪声,不

11、会随着图像信号的改变而改变。这为实际的去噪工作提供了依据。2.图像去噪效果的评价在图像去噪的处理中,常常需要评价去噪后图像的质量。这是因为一个图像经过去噪处理后所还原图像的质量好坏,对于人们判断去噪方法的优劣有很重要的意义。目前对图像的去噪质量评价主要有两类常用的方法:一类是人的主观评价,它由人眼直接观察图像效果,这种方法受人为主观因素的影响比较大。目前由于对人的视觉系统性质还没有充分的理解,对人的心理因素还没有找到定量分析方法。因此主观评价标准还只是一个定性的描述方法,不能作定量描述,但它能反映人眼的视觉特性。另一类是图像质量的客观评价。 调试环境-MATLAB开发平台MATLAB是Math

12、 Works公司开发的一种跨平台的,用于矩阵数值计算的简单高效的数学语言,与其它计算机高级语言如C, C+, Fortran, Basic, Pascal等相比,MATLAB语言编程要简洁得多,编程语句更加接近数学描述,可读性好,其强大的圆形功能和可视化数据处理能力也是其他高级语言望尘莫及的。四 综述众所周知,由于图像在采集、数字化和传输过程中常受到各种噪声的干扰,从而使数字图像中包含了大量的噪声。能否从受扰信号中获得去噪的信息,不仅与干扰的性质和信号形式有关,也与信号的处理方式有关。在实际应用中,针对不同性质的信号和干扰,寻找最佳的处理方法降低噪声,一直是信号处理领域广泛讨论的重要问题。小波

13、包分析的应用是与小波包分析的理论研究紧密地结合在一起的。现在,它已经在科技信息产业领域取得了令人瞩目的成就。如今,信号处理已经成为当代科学技术工作的重要组成部分,信号处理的目的就是:准确的分析、诊断、编码、压缩和量化、快速传递或存储、精确的恢复(或重构)。从数学的角度来看,信号与图像处理可以统一看作是信号处理,在小波包分析的许多分析的许多应用中,都可以归结为信号处理问题。小波包分析的应用领域十分广泛,它包括:信号分析、图象处理、量子力学、理论物理、军事电子对抗与武器的智能化、计算机分类与识别、音乐与语言的人工合成、医学成像与诊断、地震勘探数据处理、大型机械的故障诊断等方面。例如,在数学方面,它

14、已用于数值分析、构造快速数值方法、曲线曲面构造、微分方程求解、控制论等。在信号分析方面的滤波、去噪、压缩、传递等。在图像处理方面的图象压缩、分类、识别与诊断,去污等。在医学成像方面的减少B超、CT、核磁共振成像的时间,提高分辨率等。小波包分析用于信号与图像压缩是小波包分析应用的一个重要方面。它的特点是压缩比高,压缩速度快,压缩后能保持信号与图像的特征不变,且在传递中可以抗干扰。基于小波包分析的压缩方法很多,比较成功的有小波包最好基方法,小波域纹理模型方法,小波变换零树压缩,小波变换向量压缩等。小波包在信号分析中的应用也十分广泛。它可以用于边界的处理与滤波、时频分析、信噪分离与提取弱信号、求分形

15、指数、信号的识别与诊断以及多尺度边缘检测等。 A ·The wavelet study the meaning and backgroundIn practical applications, the different nature of the signal and interference, to find the best processing method to reduce noise, the important issue is widely discussed in the field of signal processing. Currently, there a

16、re many methods can be used to signal noise reduction, such as median filtering, low pass filtering, Fourier transform, etc., but they are filtered out by the useful part of the signal details. The traditional signal de-noising method smooth signal only from the time domain or frequency domain are g

17、iven the results of the statistical average. Time domain or frequency domain characteristics of the effective signal to noise removal, but not taking into account the local and the whole picture of the signal in the time domain and frequency domain. More Practice has proved that the classical approa

18、ch based on the Fourier transform of the filter, and can not be non-stationary signal analysis and processing, denoising effect can not meet the requirements of engineering application development. In recent years, many papers non-stationary signal wavelet threshold de-noising method. Donoho and Joh

19、nstone contaminated with Gaussian noise signal de-noising by thresholding wavelet coefficients. Commonly used hard threshold rule and soft threshold rule set to filter out the noise from the signal high-frequency wavelet coefficients to zero. Practice has proved that these wavelet thresholding metho

20、d with approximate optimization features, has a good performance in the field of non-stationary signals. The threshold rule mainly depends on the choice of parameters. For example, the hard threshold and soft threshold depends on the choice of a single parameter - global threshold lambda lambda adju

21、stment is critical However, due to the non-linearity of the wavelet transform. Threshold is too small or too large, will be directly related to the pros and cons of the signal de-noising effect. When the threshold value is dependent on a number of parameters, the problem will become more complex. In

22、 fact, the effective threshold denoising method is often determined based on wavelet decomposition at different levels depending on the threshold parameter, and then determine the appropriate threshold rule. Compared with the wavelet analysis, wavelet packet analysis (Wavelet Packet Analysis) to pro

23、vide a more detailed analysis for the signal, it will band division of multi-level, multi-resolution analysis is no breakdown of the high-frequency part of the further decomposition, and according to the characteristic of the signal being analyzed, adaptive selection of the corresponding frequency b

24、and, to match with the signal spectrum, thereby increasing the time - frequency resolution. The wavelet packet transform is the promotion of the wavelet transform in signal with more flexibility than the wavelet transform. Using wavelet packet transform to the signal decomposition, the low-frequency

25、 part and high-frequency components are further decomposed. Wavelet packet signal de-noising threshold method combined with good application value.At present, both in engineering applications and theoretical study, removal of signal interference noise is a hot topic. Extract valid signal is band a w

26、ide interference or white noise pollution signal mixed with noise signal, has been an important part of signal processing. The traditional digital signal analysis and processing is to establish the basis of Fourier transform, Fourier transform stationary signals in the time domain and frequency doma

27、in algorithm to convert each other, but can not accurately represent the signal time-frequency localization properties. For non-stationary signals people use short-time Fourier transform, but it uses a fixed short-time window function is a single-resolution signal analysis method, there are some irr

28、eparable defect. Wavelet theory is developed on the basis of Fourier transform and short-time Fourier transform, and it has the characteristics of multi-resolution analysis, have the ability to characterize the local signal characteristics in the time domain and frequency domain, is an excellent too

29、l for signal analysis . Wavelet transform (Wavelet transform) emerged in the mid 1980s when the frequency domain signal analysis tools, since 1989 S.Mallat the first time since the introduction of wavelet transform image processing, wavelet transform its excellent time-frequency local capacity and g

30、ood to go related capacity in the field of image compression coding has been widely used, and achieved good results. Multi-resolution wavelet transform, time-frequency localization characteristics and calculation speed and other attributes, which makes the wavelet transform has been widely applied i

31、n the field of geophysics. Such as: using wavelet transform gravity and magnetic parameters of the extraction, the magnitude of the error of the reconstructed signal with the original signal after the wavelet analysis as a standard to select the wavelet basisSeismic data denoising. As technology adv

32、ances, the wavelet packet analysis (Wavelet Packet Analysis) method developed wavelet packet analysis is the expansion of the wavelet analysis, with a very wide range of application. It is able to signal to provide a more detailed analysis of the method, it is the band multi-level framing is not bro

33、ken down at high frequency portion of the discrete wavelet transform is further analyzed, and according to the characteristics of the signal to be analyzed, adaptively selecting the frequency band corresponding to , with the signal matching, thereby increasing the time-frequency resolution. The wave

34、let packet analysis (wavelet packet analysis) signal to be able to provide a more detailed analysis of the method, it is divided band multi-level wavelet analysis no breakdown of the high frequency portion is further decomposed, and according to the characteristic of the signal being analyzed, adapt

35、ively select the appropriate frequency band, the signal spectrum to match, thus wavelet packet has a wider range of applications. Fractal theory of wavelet packet by U.S. scientists BBMandelbrot in the mid-1970s the creation of "self-similarity" and "self-affine fractal object, dimens

36、ion to quantitatively describe the complexity of the signal, it is mainly research, widely used in many fields of science, including the recent wavelet analysis and fractal theory, is used to determine the overlap complex chemical signals in the group scores and the peak position and fractal charact

37、eristics of the DNA sequence. Using wavelet packet analysis for signal noise reduction, an intuitive and effective wavelet packet de-noising method is the direct thresholding wavelet packet decomposition coefficients, select the filter factor coefficient signal reconstruction preserved, and ultimate

38、ly to drop The purpose of the noise. Signal de-noising using wavelet packet analysis, feature extraction and recognition is an important application of wavelet packet analysis in digital signal processing. B·The development and application of wavelet analysisWavelet packet analysis of the appli

39、cation of theoretical research and wavelet packet analysis closely together. Now, it has been made in the field of science and technology information industry made remarkable achievements. Electronic information technology is an area of six high-tech focus, image and signal processing. Today, the si

40、gnal processing has become an important part of the contemporary scientific and technical work, the purpose of signal processing: an accurate analysis, diagnosis, compression coding and quantization, rapid transfer or storage, accurately restore (or reconstructed). From the point of view of mathemat

41、ically, signal and image processing can be unified as a signal processing, wavelet packet analysis many many applications of the analysis, can be attributed to the signal processing problem. Now, for its nature with practice is stable and unchanging signal processing ideal tool still Fourier analysi

42、s. However, in practical applications, the vast majority of the signal is stable, while the tool is especially suitable for non-stationary signal is wavelet packet analysis.In recent years, the combined fund research projects and corporate research projects. China in the application of wavelet packe

43、t analysis carried out some exploration.First, wavelet packet signal analysis, the the boundary singularity processing method and wavelet packet processing in the frequency domain positioning is perfect from the application point of view. Harmonic wavelet packet analysis method, and the harmonic wav

44、elet packet and fractal combined to solve practical problems in engineering.Secondly, in the operation of the rotor vibration signal detection of the fault feature analysis simulation and practical research. Motor noise analysis method using wavelet packet analysis theory to identify the impact thre

45、shold to noise singular signal of the acceleration of the vehicle, using the method of wavelet packet analysis and come to a satisfactory conclusion, while the harmonic wavelet packet combined with the fractal theory. Automobile gearbox nonlinear crack fault feature, the first application of the met

46、hod of combining wavelet analysis and fractal theory and the technical design of the vehicle driveline. Middle and low agricultural transport light goods vehicle driveline job stability is not good, the problem of short working life, in the practical application of engineering to explore a new way.N

47、ext, using theoretical analysis, experiments and software implementation phase junction station, namely the use of wavelet packet analysis and computer programs to achieve the digital signal processing. In the analysis of non-stationary signals, respectively, using existing technology and wavelet pa

48、cket analysis method, the fractal method is used, expect improvements in digital signal processing. To reflect the complex characteristics of the information to improve the accuracy of the signal analysis and detection, reached the advanced level. On the basis of cooperation with others to complete

49、a set of signal processing methods and techniques of high-speed data processing system.In recent years, the range of applications of the wavelet packet is increasingly far and wide. Wavelet packet analysis any signal can be mapped to a basic wavelet telescopic pan from the wavelet function up. Signa

50、l to achieve a reasonable separation of the different frequency bands at different times, without losing any of the original information. These features for non-stationary dynamic signal description, analysis of the mechanical parts fault characteristic frequency, weak signal extraction provides an

51、efficient and powerful tool to achieve early fault diagnosis. In recent years, through the continuous efforts of the scientific and technical personnel in China have achieved encouraging progress, successfully developed a wavelet transform signal analyzer, to fill the gap with the international adva

52、nced level. In theoretical and applied research on the basis of the generally applicable to non-stationary detection and diagnosis of mechanical equipment online and offline technologies and devices to obtain economic benefits. The National Science and Technology Progress Award.(1) wavelet packet an

53、alysis applications in image processingIn image processing, the application of wavelet packet analysis is very successful, and this aspect of books and academic papers are particularly high. Dyadic wavelet transform for image mosaic and mosaic, can eliminate the seam. Orthogonal transform and wavele

54、t packet image data compression. Is expected to overcome the the blocking effects arising due to compression of data, to obtain better compression results. Wavelet packet transform method for edge detection, image matching, image target recognition and image thinning.(2) The wavelet packet analysis

55、application in fault diagnosisWavelet packet analysis in fault diagnosis has been made a great success. Wavelet packet analysis can not only be detected in the low signal-to-noise ratio of the signal to the fault signal, and can filter out the noise to restore the original signal has a high applicat

56、ion value. Wavelet packet transform is applied to power system fault analysis, particularly suitable for motor rotor cage broken bars and generator rotor failure analysis. With the dyadic wavelet Mallat algorithm reciprocating compressor cover vibration signal decomposition and reconstruction can be

57、 diagnosed into the exhaust valve leakage fault. Gearbox failure sound pressure signal using wavelet packet decomposition, diagnose gearbox root crack fault.Wavelet packet analysis in speech signal processing. The purpose of the speech signal processing is to get some of the speech parameters for ef

58、ficient transmission or storage. Wavelet packet analysis can extract some of the parameters of the speech signal, speech signal processing. The main contents include: the theory of wavelet packet used in voice processing Voicing segmentation, pitch detection, to impatient to rebuild data compression and other aspects. Wavelet Packet used in speech signal extraction, the voice station into i

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论