辊压机相关常识_第1页
辊压机相关常识_第2页
辊压机相关常识_第3页
辊压机相关常识_第4页
辊压机相关常识_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、辊压机的使用及操作 yBUWas(     在此我主主要针对辊压机的使用及操作,综合我公司在线辊压机的使用经验以及通过各种渠道获取的知识、信息,在此向大家做一简要介绍 T|nw_0  一        辊压机的基本结构 gF,9Kv  对此大家可能都比较清楚,在此简要叙述一下:它主要由轴线平行一对辊子组成,辊子通过辊轴两端的轴承座安设在框架内,一个辊子相对框架是固定的,称为定辊,另一辊子的轴承座可以在框架内沿滑道作水平往复运动,称为动辊,工作时两辊向中间作相向转动,液压系统施

2、加的压力通过动辊轴承座将定辊推向定辊,机械限位保持两辊间存在一定间隙,此时压力通过机械限位传递给框架,当有物料喂入两辊之间时,物料被咬入,两辊被撑开,此时液压系统施加的压力通过动辊传给物料,再经定辊、定辊轴承座、定位销、传给框架,在此过程中,两辊间通过物料产生作用力及反作用力,使物料得到粉碎。由于两辊的转动,物料被不断的咬入,并被强制卸出,从而实现连续的粉碎作业。 *U|KdlK  二辊压机的工作原理 0+p <Jc!  与辊压机结构比较相近的一种设备是辊式破碎机,但他们的工作原理是绝然不同的,辊式破碎机是但颗粒破碎,而辊压机是根据料床粉碎的原理设计的,即在较高的压力

3、作用下,物料颗粒之间相互挤压而产生破碎,要实现这种作用,必须保证辊压机的过饱和喂料,即要求在两辊上方存续有一定的料柱高度,保持一定的料压。这也是辊压机系统必须设置称重仓的原因之一。 RuSKJ,T:9  三介绍一下与辊压机使用有关的两个主要参数 :23wvt=  1辊压 g.$apZz  5nC#<EE  压力是决定辊压效果的最基本参数。液压系统压力是一个设备操作参数,并不是工艺参数。它并不能直接反映辊压机磨辊对物料的挤压应力,必须通过辊压机的液压缸数量和活塞有效面积,才能换算成两磨辊间的总压力,进而求出表征辊压各种量值。下列为表征辊压机辊压的几个

4、量值的计算式 LCKCgD  辊压机总力 F(kN) L;U Z)V     Fn·S·Pr                                     &#

5、160;    (1) 4h% G %>j                式中: n一液压缸数 R| 4a9 G                      S一液压缸有效面积(m2) "f4oK w  P

6、r一液压系统压力(MPa) /qf (5Bm  平均辊压 Pcp( KN/ m2) bxU2.YC  Pcp2F/D·B sin                      jTSNR9  式中: D 一磨辊直径(m) ;iB9p$K)           B

7、磨辊有效宽度(m) ML:ZmA1U                       -压力角或称咬入角(°) *P:!lO|  投影压力PT( KN/ m2)                  

8、;    ./7 *<W:              PT=F/B·D                              &#

9、160;         e9eh? bPU  实际上真正对辊压效果起作用的是最大辊压。以两辊中心连线为0度,压力角起始于8.3度,终止于1.6度,而最大尖峰压力位于1.5度,尖峰压力略大于平均压力的2倍 6x*$/1'M3;  粉碎效应是压力的函数,试验表明平均压力在80-120MPa之间细颗粒增加速度最快,粉碎效率较高,辊压超过150MPa不再增加。辊压增加,单位能力电耗也增加,辊面磨损亦加重。为此辊压机设计时要寻找一个合适的辊压值。对于特定的辊压机,由于其辊径和有效辊宽已确定,因辊

10、压与液压系统压力呈线性关系。因此液压系统压力就可以作为辊压机的工艺参数加以调整。 /s(? =qYH       针对不同的工艺系统,辊压机采用的辊压值亦不相同。早期用于预粉磨的辊压机辊子的投影压力波动于8500-10000kN/m2相当于平均压力为120-150MPa;当前联合粉磨的辊压机投影压力已降至5000-6000kN/m2,相当于平均压力为70-80MPa。液压系统压力的选择的依据是喂入辊压机物料的物理性能、辊压机系统工艺以及后序设备的配套情况 $wm.,Vb  压力沿辊宽呈不均匀的曲线分布,窄辊压力分布呈三角型,尖峰值2倍

11、于平均压力;宽辊的压力分布呈抛物线型,尖峰值1.5倍于平均压力。压力沿辊宽的分布状况说明物料通过辊压机时有些部分是压力不足,有些部分又超压浪费 +/F?_I= %    ?PSJQ3BC|  小于0.5 PCP AMSn 75  大于1.5 PCP ).i :C(|  窄辊 U|jip1  35% |;XDOk;  30% #W2#'J:l  宽辊 JfVGs; _,  20% pP"p"<s  0 w$_2t  由此可见宽辊有更好的压力分布曲线,意味

12、着粗颗粒循环量少和总的能耗低 IEQ6JL  端部压力降低的原因是喂料溜子和夹板(也就是两辊端面的侧板)摩擦减慢了端部的喂料速率,这就形成了所谓的边缘效应。为此加强端部喂料、保持夹板的良好封闭状态即可改善压力分布 SJa/I EZ.  2. 料饼厚度 3b's'S|  %q5iy0P  辊压机的通过量公式为 /u N3"m5i  Q=3600·B·s··(t/h) 'P,F)*kh  式中:B-辊压机宽度(m) J"O#w BM9  

13、0;                           s-料饼厚度   (m) Zz<9zix                   

14、;           -辊压机线速度(m/s) rXR|;>                              -料饼容重 (t/m3) L<)9*  由于辊压机辊宽、线速度一定,调整料饼

15、厚度也就是调整辊压机的通过量(也就是辊压机的生产能力) v_<K4N  料饼厚度与辊压前后物料的容重、咬入角和辊径有关,压缩前物料的容重决定与物料的粒度组成,压缩后的物料容重于辊压有关,最大可至物料真比重的80% P$ |DiiH  咬入角()决定与物料物理性质以及辊面的状况(一般为8-9度)如果辊压前后容重及咬入角不变则料饼厚度仅与辊径有关,一般料饼厚度0.02D,如果辊压降低料饼将变厚,这说明辊压机能力(通过量)将随辊压降低而增加。 Q,A"e#:  在实际生产中,料饼厚度(即通过量)的波动主要是由于物料物理性能(主要是颗粒组成)变化引发的咬入

16、角的变化,在生产实践我们会体会到:物料粒度偏大,料饼就较厚;细粒级含量增多时,辊缝就将减小。所以要保证辊压机通过量的稳定,首先要保证入料性能的稳定。 m'%Z53&  在保持使用压力不变情况下,需要调整辊压机通过量(料饼厚度),只能使用辊压机进料装置的调节插板才能有效,其他方式的调节都将破坏辊压机料床粉碎的工作原理。一般料饼厚度调节准则是:在工艺设备能够满足要求的前提下,应适当加大料饼厚度,尤其是当所喂料的粒度较大时,可以降低设备的负荷波动,有利于设备安全运转,因为这样可以适度加大辊压机能够耐受的非破碎物的尺寸 &sx|sLw)  由于粉碎效果决定于

17、粒间压力而与料饼厚度无关,所以不要错误地认为增大料饼厚度,会导致辊压机出料中粗颗粒含量的增加 _u:4y4  四辊压机操作参数的调整及操作方式 Vy:ER  当一台辊压机应用于具体的工艺生产线中时,其规格参数,包括辊面形状、辊宽、线速度、装机功率以及液压系统最大操作压力均已确定,喂入辊压机新鲜物料的物理特性基本定型(当然对于不同生产品种,亦存在较明显变化)。因此辊压机可以调整的参数,实际上只有液压系统压力和辊压机出料的料饼厚度(即通过量) XfxNyZsy&>  辊压机的功率计算公式为: vAJfMUlP  N=2··P

18、T ·D·B·(kW)式中为作用角,一般为1/3 咬入角 rcCHZo/V  由于在辊宽、辊径一定情况下,投影压力决定于液压系统压力;辊压及咬入角又与料饼厚度直接相关,所以从上式可以看出辊压机的液压系统压力和料饼厚度决定了辊压机主电机的输出功率。在保持主电机输出功率相对不变时,不同的压力与料饼厚度的搭配,即不同的操作方式,将对挤压后的物料产生不同的效果。当高压力、薄料饼操作时,将使输出料的颗粒分布放宽,既有较高成品含量;低压力、厚料饼操作时,输出物料的颗粒均匀性好,但成品含量会有所降低。   C_#0Y_O  辊压机的操作方

19、式应根据工艺流程、物料情况、设备配置方式进行选择,由压力和物料循环量的不同,形成低压大循环和高压小循环为特征的操作方式。 +MR|3  各种专门为辊压机系统配置的选粉设备的出现,为技压粉磨新工艺的出现提供了条件,使低压大循环成为辊压机的操作方式的主流,为辊压机的可靠、稳定运行奠定了基础,在某种意义上讲辊压机使用的推广亦有赖于此。目前,我公司对带有辊压机的水泥粉磨系统进行增加打散分级机的系统工艺改造,也正是出于这一原因 ZrAa#z"<  五各种挤压粉磨工艺的特点及辊压机操作具体说明 r+0)l:.  1.预粉磨系统 XE$eHx3;  预

20、粉磨系统是将物料在辊压机进行挤压预处理,一般采用边料循环方式,将由于边缘效应而辊压不好的边料分出后,中料送入球磨机粉磨至成品。可采用低压大循环和高压小循环两种操作方式。实验证明:对于预粉磨系统,高压操作时,循环负荷(回辊压机料量与新喂入料量的比值)在100%时对功耗和节能幅度有一个最佳值,而低压时,循环量增加,系统功耗降低、节能幅度增加,直至300%采趋于稳定。由此可以认为:低压操作时料饼循环量在200%-300%是有利的,高压操作时料饼循环量宜控制在100%左右。 rP<a.  就系统功耗的绝对值而言,两种方式在循环量为270%时相同,在小于这一循环量范围,高压操作始终低于低

21、压操作;在各自最佳循环负荷下(功耗最低)前者亦较后者的5% Yp yl  预粉磨系统由于原料颗粒分布集中、不连贯,细粉含量多,物料辊压前后容重变化大,形成辊压机较大的水平位移,水平振动剧烈,另一方面,物料易出现离析,导致辊缝偏斜,增加载荷,所以上述两种操作方式,均存在一定不足。具体方式的选择需要依据具体系统的辊压机工况、附属设备及后续球磨能力确定 u khI#:  根据上面所述内容,预粉磨系统采用高压小循环方式较为适宜,降低循环量,秤重仓内细粉比例小,避免发生严重离析现象,减少辊子的偏斜,同时可以杜绝秤重仓内细粉积存形成的塌料、下游输送设备过载的情况。对于后续磨机由于配置、

22、介质级配、工况等因素形成的与辊压机能力不匹配情况,可采取减薄料饼厚度、控制通过量的方式来保证辊压机较小的循环量,不宜采用过分加大循环量的做法。这里需要说明的是:通过调整辊压机钳料范围,减小其通过量要注意适度,如果辊压机入料口调的过小,使物料流出速度小于辊压机线速度时将导致在有仓重情况下的喂料不饱和。 8:&MZQ&!  无论采取何种操作方式均应保证辊压机达到合理的功耗,充分发挥其在整个系统中的作用。 !A,I 9  2. 联合粉磨系统 _ _)Z Q  联合粉磨系统是将挤压后的物料(包括料饼)先经打散分级后,小于一定粒径的半成品(一般为小于0. 5

23、mm-1 mm)送入球磨机继续粉磨,粗颗粒返回辊压机再次挤压 。辊压机的操作原则应该是努力提高打散分级机的半成品总量,降低半成品粒径,而并不需要追求半成品中的成品含量。因而宜采用低压大循环的方式操作。尽可能加大辊压机与打散分级之间的循环量。正如前面提到的料床粉碎作用决定与粒间压力,而不决定于两辊的间隙,所以在压力不变情况下,可以认为:辊压机出料中细粉比例不变,增加通过量就意味着辊压机半成品量增加,系统产量的提高。 2#!$f_  3.半终粉磨系统 )Zel.XD  联合粉磨系统中打散分级机的细粉与球磨机出料一同送入球磨选粉机分选。辊压机的操作仍与联合粉磨相同,以低压大循环为

24、主。这种系统,由于将辊压机系统的细粉先经过成品选粉机分选,合格细度的物料不再进入球磨,避免了过粉磨现象和不必要的能量消耗,系统电耗较联合粉磨系统低,但由于部分经辊压机处理形貌成片状的物料,未经球磨“打圆”而直接进入成品,会造成成品标准稠度需水量一定程度的提高    sL9_z'  对于上述两种系统采用低压大循环的操作方式另一方面因素在于考虑料饼的打散问题,V型选粉机的打散效果直接影响到辊压机系统的循环量以及能耗,如果压力过高,料饼过于密实,细粉难于释放,导致辊压机出料有效粒径的提高。对于特定的系统,适宜的使用压力应通过生产实践摸索予以确定。需要注

25、意的是入辊压机物料综合水份亦是影响打散效果的重要因素,在生产中应予以充分注意。入料水份在一定范围内对挤压效果影响很小,少量水份甚至可以改善挤压性能,2%-3%的水份较为理想。 Pd*wR  4.各种辊压机粉磨系统的性能比较 nK|"  下面介绍一下洪堡、史密斯公司基于经验和试验提出的辊压机粉磨系统的能耗比较 & aLR'*6  粉磨系统 HIUm<  球磨系统 RTU:J67E  预、混合粉末系统 cn c$c  联合粉磨系统 OiOL 45(  终粉磨系统 aj,ZM,Ad  主机

26、单位电耗 8vRiVJ8QS:  39 oN$ZZk R  33 Q.>+41&&  28 h$&XQq0T  24 ;x#>J +QlG  粉磨系统电耗 _:L*=N  47 hN=X  40.5 9+EhP$RS  38.5 f#Re:7.c  28 kTz  功耗分配 Z kC28  球磨 76b7-Nj"  1 EVFfXv  3/4 xgz87d/<:  1/3 p LzZK0  0

27、WDdii>2  辊压机 0EOX;  0 Ij1 GZA(  1/4 2.D!4+&  2/3 P|4E1O  1 Wk?|BRO       根据上述数据,在我们判定系统工艺改造提产幅度时,应注意球磨与辊压机功耗的对比情况。 1gm/w6O  六辊压机使用及操作中应注意的几个问题 k6'#  iBQBHF  1.称重仓的设置及仓重控制的意义 4AOSW  SU O;  辊压机之所以具有高效节能效果是因为它应用了高压料床粉

28、碎原理进行工作,如前所述,要实现辊压机料床粉碎的机理,必须保证其过饱和喂料。称重仓是实现过饱和喂料的必然设置。称重仓主要作用并非是计量仓内物料的重量,而是配合料流调节回路,确保仓内始终存有一定物料,实现过饱和喂料的控制要求。同时,秤重仓的仓重监控的设置,亦为操作者提供了判定、调整辊压机系统平衡的依据。 c4E 2c  从设备角度来说,稳流称重仓虽不属于辊压机,但在工艺系统中,却是挤压粉磨系统中必不可的部分。如果采用空仓操作方式,物料将处于松散状态通过辊压机,难以保证辊压机的过饱和喂料要求,不能连续实现料层粉碎,挤压效果差,系统能力难以发挥,同时还会出现因喂料不均匀,负荷波动大,引起设

29、备振动;物料落差高,粉尘飞扬,恶化生产环境等一系列不良后果,所以在生产中一定要避免这种现象 &8+6!TN7  2.确保喂料装置的良好状态 0ITA3v8  HwWMqA  喂料装置是满足辊压机满料操作的重要装置,由弹性支撑的侧挡板和调整通过量的插板组成,该结构应与钳料范围辊面共同组成一个相对密闭的空间,以确保将料压传递给辊子,实现充分的喂料。如果侧挡板与辊端面存在较大缝隙,出现大量漏料,将导致辊宽近端部喂料更加不充分,边缘效应加剧,如前所述的压力分布曲线将趋于平缓及收束,是更多的物料吸收较低的压力,辊压效果下降,系统能力降低,这一点对于预粉磨系统尤为重要

30、 5u)FIBj  92aDHECo  另一方面如果喂料装置密闭性差,将导致辊压机实际通过量过多地超过理论通过量,在系统循环量较大、入辊压机细粉含量高情况下,极易导致下游设备过载。所以在运行中应加强对辊端部漏料情况的检查,定期停机检查确认,及时调整,保证合理间隙,磨损后应及时补焊或更换。在这里需要强调一点:通过减小辊子的喂料宽度,来减少辊端漏料的做法是极不可取的,如前所述这将加剧边缘效应,降低系统能力,同时将导致辊面的不均匀磨损,缩短辊面使用周期。 mXU?+G0  tw4am.o1  3.满足使用压力的要求 t7oz9fSz=?  我公司在线

31、运行预粉磨辊压机功耗普遍偏低,基本处于电机额定功率的60%左右重要原因在于使用压力偏低,使用压力低,料饼中存在完整、未受损伤的颗粒,导致后续球磨吐渣严重,难以遵循合理的配球原则,系统能耗难于降低。解决这一问题的途径根本在于完善辊压机性能。 -8Q= N  4.确保辊压机通过量 M,|V3s      辊压机承担的粉磨功耗愈多,系统能耗就愈低、台时就越高,而辊压机消耗功率取决于使用压力机通过量,所以,在附属设备能力满足情况下,应尽可能加大辊压机通过量,这一点对于联合及半终粉磨系统而言尤为重要。 /cL 9 ?k;o  5.辊子偏斜与两辊

32、电流的差异 !v5sWVVR  辊子的偏斜是由沿辊宽方向物料粒度组成存在差异,导致辊两端 vQBY1-S  咬 入角不同所引发的,而形成入辊压机物料沿辊宽粒度组成的差异的 QVSsi j  原因在于:秤重仓内物料的不均匀离析。辊子长期的固定性的处于较严 G N kB  重偏斜状态,直接危及到辊子轴承及液压缸,运行中必须加以避免和解 y13CR2t6  决。在两辊加工良好、轴承、传动设备工况基本一致情况下,理论上定 GwMUIevO_  辊电流比动辊高,但幅度并不大。如两辊电流相差较多,则说明在垂直 1(:bBl  辊子轴线方

33、向物料粒度组成存在差异,由此导致两辊钳入角不同,物料 q-3J.VLJ5H  咬入点连线与两辊中线连线不平行,产生了附加力矩,两辊负载不平衡。 7dufY  上述两方面问题均主要涉及入辊压机物料粒度组成在辊压机钳料范围内的一致性,对于前者通过辊压机纠偏程序难于根本解决,纠偏造成的单侧压力偏低,将影响到辊压效果;对于后者,就辊压机自身而言更是缺乏手段。根本解决途径在于找到消除秤重仓内的不均匀离析的手段针对生产品种变化以及生产中不确定因素造成的物料的变化这种手段必须是可调的。 DV7<n&P  6.辊压机系统连锁程序设置应注意的方面 P&1s,S

34、8J#  由于辊压机设有称重仓,可以作为辊压机闭路内物料提供存储和缓冲,喂料闸板可以快速切断辊压机入料,因此,辊压机闭路与后续球磨系统在连锁程序设置上具有相对独立性,为避免辊压机系统高压设备频繁起停,输送设备带料停机,在后续设备发生故障时,辊压机系统可不参与连锁停机,只须设置喂料闸板连锁关闭程序。需要着重强调的是:由于辊压机为强制卸料,所以其下游输送设备必须与辊压机主机设置连锁停机程序,皮带机、提升机必须设置测速装置并与辊压机主机设置连锁停机程序,否着有出现设备损坏的可能。 a8bX"#OR&N  7.除铁装置的使用 iJCY /*C  kH&g

35、t;vD = q>  由于辊压机使用压力较高,两辊间进入较大金属异物时必然会导致辊面的损伤、进而引起严重的辊面剥落,直接影响辊子的使用寿命及辊压机运转率,为此辊压机来料及循环流程必须设置除铁装置,为防止非磁性金属及大质量金属进入,必须设置金属探测器,我公司在线运行辊压机系统金属探测器均由于性能问题而未投入使用,这已成为我公司辊压机安全运行的一大隐患,急需寻求可靠设备予以解决。 GGI!2,_  8.蓄能器压力的设置 EaM"=g  vu_>U(. T  由于辊压机是在较高负荷下运行,所以必须避免过度的冲击载荷,蓄能器即可起到缓冲、减

36、震作用,蓄能器容量愈大,其缓冲作用愈明显,液压系统特性愈软,虽然动辊水平位移波动大,但辊电流波动小。蓄能器的预充压力应略低于系统工作压力的波动最低点(工作压力的60-65%),系统工作时 氮气囊进油阀应始终处于开启状态。预充压力过高,系统刚性太大,承受冲击载荷大、蓄能器进油阀将发生频繁开闭,弹簧易损坏,阀芯进入蓄能器内容易划坏氮气囊;预充压力过低,氮气囊进气口部位易于损坏。 xPH jONu  KD,*FkkL  9.后续球磨操作的注意事项 J:$gu      对于联合粉磨系统由于辊压及半成品已较细(V选半成品比面积可达170m2/

37、kg以上),后续球磨在配球方面必须与之相适应,充分发挥研磨作用,在平均球径、衬板形式的选择上均应予以充分考虑,如使用打散分级机,设备本省结构决定其半成品中必然存在一定比例的粗颗粒,磨机球径不可选择过小,一仓衬板必须保有一定带球能力。 IL+#ynC  E(aX4g       由于入磨物料粒度较细,联合粉末系统还会有较大量成品颗粒进入磨机,为减少静电吸附、包球衬垫作用对粉磨效率的影响,应尽量使用助磨剂。 u=dj  7Q*h  七辊压机正常运行状态的确认: 2|0Je$|  1. 辊压机活动辊脱离中间架挡

38、块作规则的水平往复移动,这标志液压压力完全通过物料传递; 9_J!s  8FO1%8Oe  2. 两台主电动机电流达到额定电流60% 以上,在额定电流范围内作小幅度的摆动,这标志辊压机对物料输入了粉碎所需的能量。 S=XIf  1zb$5,|  3.喂入两辊间物料应承堆存状态,溜子出口不存在快速的流量状态,辊端部与夹板间无明显的物料快速流动 92P ,:2a  w$DG=!  4.单位料饼功耗在2.5-3.0kwh/t范围内 q*HAIw<y  辊压机及挤压粉磨技术的进展和实践发布: 2010-9-26 10:38&#

39、160;|  编辑: 小平 |   来源: 本站原创     【水泥人网】 摘要:本文介绍了辊压机及挤压粉磨技术装备与工艺,如耐磨辊面的全套修复方案,挤压联合粉磨及半终粉磨工艺的优化设计,挤压终粉磨工艺的研究与实践,水泥颗粒分布及形态的比较分析;大型水泥粉磨系统工艺方案的比较等方面的最新研究成果及其应用实践。1、前言我国辊压机及挤压粉磨技术经过近二十年的研究与应用已日趋成熟,可以说基本解决了应用的一系列关键技术问题,尤其是通过工艺系统的深入研究和主机可靠性的提高,辊压机系统运转率已达到球磨机系统的水平,挤

40、压粉磨的高效节能特点更加充分地以发挥。从1999年至2002年7月间近50条水泥生产线相继应用的效果看,这一技术已成为1000t/d、2000t/d、2500t/d熟料等大型水泥生产线水泥粉磨系统的优选方案。由于辊压机可以和打散分级机、球磨机、选粉机等构成多种粉磨工艺流程,满足不同生产线产品产量和质量的要求,因此,更符合水泥企业实施水泥新标准的要求。本文就此阐述如下,供参考。2、辊压机装备技术的研究 辊压机在我国已经历十余年的研究与应用,一方面体现出其高效节能的特点,另一方面由于设备的不成熟和我们对其固有特性认识不足,给早期的用户带来维护上的麻烦,使辊压机的推广应用受到较大阻力,其中

41、辊压机辊面的耐磨设计及其修复;辊压机设备的振动;辊压机工艺参数的设计与调整等成为辊压机设备中急待解决的问题。 2.1 辊压机辊面耐磨技术的研究对于辊压机辊面耐磨技术,国内外各大水泥装备公司均投入大量的资金和精力加以研究,先后开发出整体铸造式、整体堆焊式、堆焊镶套式、硬质合金柱钉式、分块式以及硬质合金烧结式等。其中整体铸造、整体堆焊属于早期技术;硬质合金柱钉式和硬质合金烧结式,因对物料中异物的敏感性强或因造价昂贵,未被广泛使用;分块式辊面由于受力的不合理性,在1996年以后即被否定;目前从耐磨设计的合理性以及使用、维护、更换等诸多因素综合考虑后,被认为适应强、综合性能最好的是

42、堆焊镶套式。由于堆焊镶套式辊面实现了磨辊母体与辊面耐磨层的分离,因此,就可以使用不同的材料和热处理工艺,以分别满足磨辊主轴的综合机械性能和辊面耐磨堆焊性能的需要。其技术应包括以下几方面:a、根据被挤压物料的物理性能,选择适当的耐磨材料和辊面花纹形式,即新辊面的制造技术;b、辊面使用过程中的现场局部修复技术;c、辊面的现场整体修复技术;d、辊套更换技术。2.1.1 新辊面的设计与使用a、辊压机辊面的磨损为高应力磨粒磨损,所选用的耐磨材料,须综合考虑表面硬度、耐磨性与韧性的有机结合。针对上述情况,开发出新型耐磨焊接材料,这种材料的主要合金元素是铬钼钒类型,通过调整碳铬钼钒的不同配比获得具

43、有不同硬度和韧性的堆焊材料,以满足不同抗磨损要求和堆焊层厚度方向上硬度梯度变化的要求,并通过焊前和焊后处理,使辊面在提高耐磨性的同时,确保在使用过程中不出现大面积剥落现象。并且要求这种材料与日后修复使用的现场补焊材料具有良好的相容性。新磨辊的堆焊一般采用药芯焊丝埋弧自动堆焊工艺。b、多年实践证明,辊面花纹形式对辊面耐磨寿命的影响是较大的。众所周知,磨损的产生须同时具备两个要素,即压力和相对滑动。粉碎物料所需的压力是由被粉碎物料的性能所决定,不可改变,减小物料在挤压过程中与辊面的相对滑动,是减小磨损、延长辊面寿命的有效途径。国内早期使用的“人”字形花纹虽然能够阻止物料的圆周方向滑动,但并未制约对

44、物料在挤压过程中的轴向滑动,尤其在挤压物料颗粒较小如生产新型干法矿渣水泥时,两“人”之间的磨损较严重。因此,目前在HFCG系列辊压机辊面上广泛采用“棱”形花纹中间加硬质点的耐磨表面,取得了良好的使用效果,图1不同花纹形式的磨辊表面磨损情况;图2为在大连华能小野田水泥有限公司RPV10063型辊压机使用HFCG型耐磨辊套的情况。 图1 不同花纹形式的磨辊表面磨损情况未使用辊面(01/04/6日) 8个月(4600小时01/12/10摄)13个月(7000小时02/5/23摄)    图2 大连华能小野田辊压机使用HF

45、CG型耐磨辊套2.1.2 辊压机耐磨辊面正常使用过程中的现场局部修复辊压机辊面的局部修复,主要是针对辊面因异物的进入,造成辊面局部脱落进行的。根据损伤深度确定是否修复过度层,耐磨层修复时应与原有的隔离开来,以避免焊接热应力破坏原有的耐磨层,补焊接材料与原有的耐磨层材料应具有相容性,并且具有良好的冷焊性能。此外,修复前的表面清理,包括水泥灰和辊面疲劳层的清理,对辊面耐磨修复的质量起着至关重要的作用。目前辊面局部修复主要采用耐磨堆焊焊条手工修复,也可采用二氧化碳气体保护焊和明弧焊等堆焊方式。2.1.3 辊压机耐磨辊面的整体修复辊压机辊面整体修复分为:直接补焊和整体清除后补焊。针

46、对辊面沿辊宽方向的不均匀磨损和花纹、硬质点的不均匀磨损以及辊面的整体磨损,可以采取上述局部修复的方法进行直接补焊;在经过了多次直接补焊(一般56次)之后,由于反复承受高压挤压应力作用和焊接微裂纹在每次补焊时的不断扩展,磨辊母体表面会产生一定厚度的疲劳层,若再用耐磨修复焊条直接补焊则会产生从母体层直接脱落,此时,必须对磨辊表面的疲劳层进行彻底清理后,才能再做耐磨堆焊层。疲劳层的清理主要采用碳弧气刨或电熔刨,堆焊即可采用自动堆焊。无论是直接补焊,还是整体补焊都应注意磨辊的圆度误差和两辊直径差不得过大,否则会造成修复后的辊压机水平振动和两磨辊不均匀载荷加大。图3为旧磨辊耐磨表面修复前后的情况。

47、60;图3  某厂HFCG120-40型辊压机磨辊修复情况2.2 辊压机振动控制技术的研究辊压机振动是影响其可靠运行的关键因素之一。辊压机的振动分为活动辊水平振动和辊压机传动系统扭振。活动辊水平振动,会加剧液压缸密封圈的磨损、造成液压系统压力和传动系统扭矩波动加大,增加辊压机水平动载荷,对辊压机运行的可靠性带来不利的影响;传动系统的扭振是辊压机运行过程中极为恶劣的状态,它会造成传动系统零部件的损坏、设备基础酥松,使辊压机和系统无法运行。2.2.1 辊压机水平振动的控制辊压机水平振动主要是因为入辊压机物料颗粒过大或颗粒级配波动过大,造成物料对辊压机磨辊的反

48、作用力波动加大。控制水平振动的方法主要有:a、必须控制来料的粒度,满足辊压机对物料最大粒度的要求;b、调整、搭配新来料,尽可能使其物料的颗粒级配趋于均匀;c、适当增加料饼回料或打散分级机粗粉回料,以调整入辊压机的物料颗粒分布,增加物料密实度;d、适当增加液压系统的压力和液压系统弹簧的刚度。2.2.2 辊压机传动系统扭振的控制辊压机传动系统的扭振(也有称为气振)产生的原因主要是由于带着气体的大量细粉喂入辊压机,在挤压过程中需要排出大量的气体,造成辊压机磨辊对物料的拉入角非常不稳定,也就使得物料对磨辊的反作用力矩波动非常大,形成辊压机传动系统的扭振。根据研究表明,影响扭振形成的主要因素有

49、:被挤压物料的细度和颗粒分布;磨辊表面的花纹高度和形状;磨辊挤压的线速度。图4为物料的细度和磨辊线速度对扭振的影响(磨辊花纹形式为“菱”形加硬质点)。图4 物料细度及磨辊线速度对扭振的影响控制辊压机传动系统扭振的方法主要有:a、适当增加新给料粒度或者减少回料量(包括料饼回料和打散分级机粗粉回料);b、降低辊压机磨辊的线速度,留出挤压过程中的排气时间;c、在辊压机进料装置中增设排气厢,使得料饼中的气体得以及时排出。2.3 辊压机主要工艺参数的优化设计由于辊压机高效节能的特性被广泛认同,通过联合粉磨和半终粉磨工艺,已逐步加大了辊压机所承担的粉碎负荷,终粉磨系统则是完全由辊压机来

50、完成粉碎作业。但是,同样的辊压机在挤压大颗粒物料和挤压水泥细粉时的运行状态完全不同,因此,必须根据所需粉磨物料成品的要求以及所选择的粉磨系统来确定辊压机的辊径、辊宽、磨辊线速度和液压系统工作压力等主要工艺参数,具体考虑的原则有以下几方面:(设定辊压机装机功率不变)a、当来料颗粒较大时,应采用辊宽较窄辊压机,以防止传动系统过负荷;b、在要求辊压机系统送出较细的物料时,应适当增加辊宽,降低磨辊转速,以提高主电机的利用率,防止产生气振;c、在挤压细粉时,辊宽加大后,为保证挤压效果必须提高液压系统的工作压力,因此主轴承须重新选型,承载能力需要重新核算;3、挤压粉磨工艺系统的研究伴随着对辊压机性能特点认

51、识的加深,料饼打散分级设备的研究开发,辊压机的粉磨工艺得到迅速发展,以发挥辊压机卓越的破碎和粗磨功能,球磨机细磨功能为宗旨的挤压联合粉磨工艺;以及以先分选经辊压机挤压后的细粉为宗旨的半终粉磨工艺,已成为辊压机应用的主要方式。由于粉磨原理合理,各粉磨设备之间分工明确,使得粉磨系统综合电耗大幅度下降,系统产量大幅度提高。图5为各种挤压粉磨工艺的增产节电的比较。 辊压机与球磨机使用功率比值(%)图5 各种挤压粉磨工艺的应用范围但是,随着辊压机使用功率与球磨机使用功率比值的加大,辊压机的循环负荷量的增加,必然使入辊压机物料的粒度大幅度降低,辊压机的磨辊线速度受到气振的制约必须降低,从而,使辊

52、压机的处理能力和装机功率利用率得不到充分的发挥,造成设备能力的浪费。因此,根据原材料的性能和对产品的要求,合理选择工艺流程和主机的配备,对降低整个工程投资、保证粉磨系统稳定运行、达到预期的技术经济指标是至关重要的。基于多年的摸索和实践,目前可以根据对产品的要求和原材料物性实验、分析,确定最佳的工艺配置,预测粉磨系统建成后的运行指标。3.1 挤压联合粉磨系统的优化设计挤压联合粉磨系统主要分为:开路挤压联合粉磨和闭路挤压联合粉磨。物料经挤压打散并分选后,细粉先送入球磨机粉磨,开路则由球磨机直接粉磨至成品;闭路则由球磨机粉磨后送入选粉机选出成品。其特点是所有的成品完全通过球磨机再次粉磨完成

53、,产品颗粒分布宽、微粉含量高。因而适合应用于水泥成品粉磨。与以前的挤压联合粉磨系统相比(如图6所示),进行了如下的优化设计:图6  挤压联合粉磨系统比较a、取消辊压机料饼回料。所有挤压后的物料全部进打散分级机分选,回料量完全由打散分级机来调节控制。改进后减少了一个扬尘点和系统主要故障点;b、配单台球磨机的条件下,取消包括磨机的喂料控制设备在内的磨头仓,完全由打散分级机控制入磨物料量。以防止因磨头喂料不均匀造成磨机系统的波动,以及因喂料设备磨损影响系统运转率;c、对高细高产筛分磨的深入研究与改型设计,根据打散分级机送来的物料重新设计并优化磨内参数,有效地控制了磨内物料的流速,

54、使水泥成品在满足比表面积和强度的条件下,0.08mm的筛余大幅度下降,已达到一般闭路磨的水平,产品性能更加优良。通过上述优化设计,使整个粉磨系统从来料提升机开始到球磨机出口,甚至到选粉机成品出口为止均为密闭状态,非常有利于系统收尘;整个粉磨车间可缩短34米;系统运转率进一步提高,投资和运行成本进一步降低。但是,这种优化是建立在对整个工艺系统参数准确设计基础上,尤其是对经挤压打散后入磨的物料粒径做出准确判断后才能进行,否则,整个系统将无法正常操作。另外,值得指出的是:由于辊压机粉磨效率高,系统发热量小,入料综合水份对挤压联合粉磨系统的影响较大,对于开路挤压联合粉磨系统,由于磨内风速低,水分更是难

55、以排出,所以,作为挤压联合粉磨系统应用条件之一,控制入料水份在1.2%以内是非常重要的。3.2 挤压半终粉磨系统的优化设计挤压半终粉磨系统主要特点为:将已经挤压后存在大量微粉的物料(表1为某厂水泥配料后,经挤压打散分级,准备送入后续粉磨系统的物料颗粒分布)送入选粉机,先分选出部分成品,粗粉再送入球磨机粉磨,出磨物料也送入选粉机。图7为比较典型的半终粉磨工艺流程。打散分级机在其中除起到打散料饼,粉出细粉供选粉机分选外,还起到调整辊压机和球磨机之间负荷的作用,使整个系统平衡、稳定运行。表1 某厂水泥挤压打散分级前后物料颗粒分布表挤压半终粉磨工艺所生产的产品颗粒分布相对集中,尤其

56、是配以第三代高效选粉机的粉磨系统,产品颗粒更加均齐。这对于具有一定颗粒分布要求的水泥粉磨来说并不适合,但对于应用于新型干法生产的水泥生料粉磨来说是非常适宜,它既可以控制大于0.2mm颗粒的物料量,防止产生过多的f-CaO,同时避免产生大量的微粉,不利于窑的煅烧,还可降低粉磨系统电耗。图7  挤压半终粉磨系统由于有部分成品未经过球磨机而被直接选出,球磨机的通过能力对整个粉磨系统的制约小,因此,挤压半终粉磨工艺使原有的球磨机产能大幅度提高,可以超过100%。这就为因窑系统改造后的水泥生料粉磨系统改造提供了高效实用的方案。在制订挤压半终粉磨系统方案时,应注意处理好以下的平衡关系:

57、a、粉磨能力与选粉能力的平衡。辊压机的加入无疑粉磨能力得到增强,但如果选粉能力不能与之相适应,同样不会达到预期的效果。增加选粉能力的方法有两种:其一是更换大规格的选粉机;其二是在原有选粉机的基础上并联一台选粉机,但这两台选粉机的平衡很难调整,操作难度大,影响整个系统的改造效果;b、粉磨、选粉能力与烘干能力的平衡。辊压机粉碎物料达到同样效果时所产生的热量远不如球磨机大,因此系统改为挤压半终粉磨工艺后,系统烘干能力相对下降,所以必须降低入粉磨系统物料的综合水分或者增加粉磨系统烘干能力,如采取向打散分级机、选粉机和磨机通热风等措施;c、辊压机的主要工艺参数,包括辊宽、线速度及液压系统的操作压力等,均

58、应根据系统产量、细度的要求和已有球磨机的规格来重新核算确认。3.3 挤压终粉磨系统的研究与实践二十世纪九十年代国外就已将辊压机终粉磨工艺成功应用于水泥生料、水泥成品以及细磨矿渣,取得了令人满意的效果。我国的水泥行业对此项技术给予了高度重视,列入国家“八五”、“九五”科技攻关课题进行研究攻关,先后在陕西咸阳新型建材厂、安徽省安庆白鳍豚水泥有限公司建成水泥终粉磨生产线,通过对辊压机水泥终粉磨工艺的研究,已取得了以下成果:a、通过调整辊压机的操作参数(液压压力、磨辊转速等),已完全掌握了辊压机在挤压不同粒径物料时的运行规律。在挤压300/kg以上比表面积时,可以保证辊压机在安全、平稳的运行

59、状态下,对物料输入足够的粉碎能量,使辊压机的设备能力得到充分发挥;b、通过调整粉磨系统的循环负荷、打散分级机的分级转速以及选粉机的转速等工艺参数,可以使系统保持平稳的运行状态,粉磨系统的吨水泥电耗(旋窑42.5#普硅水泥,比表面积为300±10/)小于24kW·h/t;c、通过在系统中设置颗粒分布调节器,控制一定量的细粉返回辊压机重新挤压,使水泥成品的颗粒分布加宽,达到合理的分布比例(见表2所示);调整辊压机的循环负荷,对水泥成品颗粒进行整形,使其颗粒形貌更加接近球形(见图8所示),实现了辊压机终粉磨水泥在性能上与普通闭路磨基本一致。表2 辊压机终粉磨工艺的水泥成

60、品颗粒分别图8  辊压机终粉磨工艺的水泥成品颗粒形貌辊压机水泥终粉磨的研究成功,其意义不仅仅在于解决了终粉磨时的水泥性能问题,更重要的是在于了解并掌握了辊压机在挤压微粉时的运行特性,研究结果表明在挤压350/以上比表面积的水泥物料时,辊压机已不能再很有效地将粉碎能量输入给物料,从而明确了辊压机对物料的有效作用范围,为今后辊压机的选型配套,如矿渣超细粉磨和水泥生料的终粉磨提供了可靠的设计依据。4、挤压粉磨工艺在水泥粉磨系统中的应用 辊压机在破碎和粗磨阶段的高效率,使其在水泥粉磨过程中得以广泛应用。到目前为止,主要是预粉磨和联合粉磨工艺为主,应用实际表明无论在投资、运行成本、系

61、统运转率以及水泥成品性能等方面都取得了满意的结果,同时,在解决了物料烘干问题后,对现有生产线进行改造则不失为一个很好的方案,众多厂家的运行结果已一再证实(见附件)。 4.1挤压粉磨工艺方案比较 在水泥的挤压粉磨工艺中,目前国内主要采用挤压预粉磨(包括带边料循环的预粉磨)和挤压联合粉磨。根据有关国外资料介绍和国内众多应用事例的统计表明:预粉磨工艺可将原系统提高产量为3040%,降低电耗小于20%(34kWh/t);挤压联合粉磨工艺提高产量幅度可超过100%,粉磨系统电耗降低幅度超过30%(810 kWh/t)。其主要原因是整个粉磨系统工艺参数的合理化: a、在挤压预粉磨工艺中,由于辊压机磨辊在挤压时的边缘效应,以及辊面磨损不均匀,使辊压机出料的颗粒分别很宽,并且随着侧挡板的磨损与更换呈周期性的波动; b、辊压机工作采用料层粉碎方式,松散、块状的物料在被挤压成料饼的过程中,较软的、强度较差的物料首先被粉碎,而缺陷较少、强度较高的物料经第一次挤压未必能将其粉碎,这就是会在料饼中发现捻不碎的完整的熟料颗粒的原因。挤压后的物料易磨性存在较大差异; c、带料饼循环的挤压预粉磨工艺无法解决上述问题,带边料循环的预粉磨工艺也仅仅解决了边料粗颗粒问题,而带打散分级的联合粉磨工艺,从控制入磨粒度入手,基本解决了上述问

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论