![拉氏变换习题课ppt课件_第1页](http://file2.renrendoc.com/fileroot_temp3/2021-10/29/f2fcc979-61c8-4612-977c-2f874425eefe/f2fcc979-61c8-4612-977c-2f874425eefe1.gif)
![拉氏变换习题课ppt课件_第2页](http://file2.renrendoc.com/fileroot_temp3/2021-10/29/f2fcc979-61c8-4612-977c-2f874425eefe/f2fcc979-61c8-4612-977c-2f874425eefe2.gif)
![拉氏变换习题课ppt课件_第3页](http://file2.renrendoc.com/fileroot_temp3/2021-10/29/f2fcc979-61c8-4612-977c-2f874425eefe/f2fcc979-61c8-4612-977c-2f874425eefe3.gif)
![拉氏变换习题课ppt课件_第4页](http://file2.renrendoc.com/fileroot_temp3/2021-10/29/f2fcc979-61c8-4612-977c-2f874425eefe/f2fcc979-61c8-4612-977c-2f874425eefe4.gif)
![拉氏变换习题课ppt课件_第5页](http://file2.renrendoc.com/fileroot_temp3/2021-10/29/f2fcc979-61c8-4612-977c-2f874425eefe/f2fcc979-61c8-4612-977c-2f874425eefe5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、11!)(1)(1)(1)(1)1( mmatsmtasetstusL LL LL LL LL L )(2)()(2)(1)(1)()()(2) 1 ()(witawetiwwtuwmmmiat F FF FF FF FF F2)()()(sin)()()(cosawawiatawawat F FF F2222)(cos)(sinassatasaat L LL L3P51 EX5. 求下列函数的付利叶变换求下列函数的付利叶变换:)()()()()()()(解解:00220002| 121| 121)()(21)(2)(sin000000wwwwiwwwwiwiwiwituetueituieet
2、utwwwwwwwtiwtiwtiwtiw F FF FF FF F)(sin)() 10tutwtf 4)(sin)() 20tutwetft 202020200)(0000)(| )(sinsin)(sin)(sinwiwwwswtwdte twdtetutwetutweiwsiwstiwiwttt L LF F)(解解:5)(cos)() 30tutwetft 2022020)(0000)(| )(coscos)(cos)(coswiwiwwsiwtwdtetwdtetutwetutweiwsiwstiwiwttt L LF F)(解解:6)()(1(| )1(|)()(00)(0000
3、0000wwwwiewiwettuttuewwitwwwwitwwwtiw )()()(解解:F FF F)()() 500ttuetftiw 7)()(1(|)1(|)()(020000wwiwwwiwittuttuewwwwwwtiw )()()(解解:F FF F)()() 60ttuetftiw 8 |L LL LL L- -4 4t ts ss s + +4 4s ss s + +4 42 22 21 1. .8 8f f t te e c co os s 4 4t tc co os s 4 4t ts ss s+ + 4 4s s + + 1 16 6s s+ + 4 4+ + 1
4、 16 6 L LL LL L2 22 2p p9 92 21 1. .6 6f f t t = = 5 5s s i i n n2 2t t - - 3 3c co os s 2 2t t2 2s s= = 5 5- - 3 3s s + + 4 4s s + + 4 4L LL L- - t t- - t t1 1 . . 1 1 1 1f ft t= =u u1 1 - -e e解解 : u u1 1 - -e e= =u ut t1 1f f( (t t) ) = =u u ( (t t) ) = =s s910 2.为质L LL LL LL L1 1s si i n nt t1 1因
5、因= = a ar rc ct ta an n ,所所以以由由相相似似性性,有有t ts ss si i n na at t1 11 1= =a ar rc ct ta an n, ,s sa at ta aa a1 1s si i n na at t1 1a a即即= =a ar rc ct ta an n, ,a at ta as ss si i n na at ta a所所以以= = a ar rc ct ta an nt ts s11 )()(batubatfL L)(1|)(1|)()(1)()()()(asFeasFeabtubtfabatubatfsFtfabsassbsass
6、L LL LL L 设设解解:12 为质质L LL LL L- -a at ts ss s+ +a a2 2. . 4 4 因因f f t t= = F F s s , , 由由相相似似性性,有有t tf f= = a aF F a as sa a在在利利用用位位移移性性,t te ef f= = a aF F a as s | |a a= = a aF F a a( (s s+ + a a133.14 21因为(由位移性质)数质- -3 3t t2 2- -3 3t t2 22 22 2e es s i i n n2 2t t = =s s+ + 3 3+ + 4 4所所以以利利用用像像函函
7、的的微微分分性性,有有4 4 s s+ + 3 3d d2 2t t e es s i i n n2 2t t = = - -= =d ds ss s+ + 3 3+ + 4 4s s+ + 3 3+ + 4 4LL 21213tsdds 积质所以t t- - 3 3t t0 0- - 3 3t t2 2t t- - 3 3t t0 02 22 22 22 22 2 由由分分性性,e es si in n2 2t td dt t1 11 12 2= =e es si in n2 2t ts ss ss s+ + 3 3+ + 4 4e es si in n2 2t td dt t = =2 2
8、 3 3s s1 12 21 1s ss ss s+ + 3 3+ + 4 4s s+ + 3 3+ + 4 4LLL15 ,- - 1 1- - 1 1- - 1 1- - t tt t1 13 3f f t t = = - -F F s s, ,t t1 1d ds s+ + 1 1所所以以f f t t = = - -l l n nt td ds ss s- - 1 11 11 11 11 1= = - - -= = - -e e- - e et ts s+ + 1 1s s- - 1 1t tL LL LL L 2t积质LLt t- -3 3t t0 0- -3 3t t2 24 4
9、由由分分性性,e es s i i n n2 2t t d dt t4 4 s s+ + 3 31 11 1= =t t e es s i i n n2 2t ts ss ss s+ + 3 3+ + 4 41617 数质LLs ss s2 22 2s s1 1 利利用用象象函函的的微微分分性性,有有s s i i n nk kt t= =s s i i n nk kt td ds s= =t tk ks ss ss sd ds s= = a ar rc ct t a an n | | = =- - a ar rc ct t a an n= = a ar rc cc co ot ts s +
10、+ k kk k2 2k kk k 2LL- -3 3t t- -3 3t ts s2 22 2s se e s s i i n n2 2t t= =e e s s i i n n2 2t t d ds st t2 2s s+ + 3 3= =d ds s= = a ar rc cc co ot t( ( s s+ + 3 3) ) + + 4 42 218 04tdtLL- -3 3t t- -3 3t te es s i i n n2 2t t1 1e es s i i n n2 2t t= =t ts st t1 1s s+ + 3 3a ar rc cc co ot ts s2 2 -
11、1-1-1-13sf ttdttttLLLL2 22 2s s2 2t t- - t tF F s ss s1 11 1d ds s2 2 s s - - 1 1s s - - 1 1t t= =e e - - e e4 41 11 11 11 1- -4 4 s s - -1 14 4 s s + +1 119 111数变换a at tb bt tp p1 10 00 02 2. . 求求下下列列函函的的L La ap pl l a ac ce e逆逆:s s2 2F F s s = =s s- - a a s s- - b b1 1a ab b解解:A A 部部分分分分式式法法: : F
12、F s s = =- -a a- - b b s s- - a as s- - b b1 1a ab ba ae e - - b be eF F s s = =- -= =a a- - b bs s- - a as s- - b ba a- - b bL LL LL L 1B留数法: k k1 12 22 2s s t ts s = =s sk k= =1 1s st ts st ta at tb bt t1 12 21 12 2F F s s = =R R e es s F F s se es se es se ea ab b= =+ +e e + +e es s - - b bs s -
13、- a aa a- - b ba a- - b bL L20 112222211222110312141111coscos2313233sssssssssttssL LL LL LL L21 1100 3. 2p- -1 1- -2 2t ts s2 2= =1 1- -= =t t - - 2 2e es s+ + 2 2s s+ + 2 2L LL L 22211100 3. 6ln211211dpsdsssssss2 22 2- -1 1- -1 1- -1 12 2- -1 1- -t tt ts s1 1s sl l n n= =- -t t1 12 2s s- -t ts s -
14、-1 11 11 1= =- -= =- -e e + + e e - - 2 2t tt t L LL LL LL L221003.(8)p计 算 L LL LL LL LL LL L- -1 12 22 2- -1 12 22 2- -1 1- -1 12 22 2- -1 1- -1 12 22 2- -t t- -t t- -t t1 1s s+ + 2 2s s + + 2 21 1s s+ + 2 2s s + + 2 21 11 1= =* *s s+ + 2 2s s + + 2 2s s+ + 2 2s s + + 2 21 11 1= =* *s s + + 1 1+ +
15、1 1s s + + 1 1+ + 1 1= = e es si in nt t * * e es si in nt t1 1= =e es si in nt t - - t tc co os st t2 223 1111221113sssu t由延迟性质: L LL L= =L LL LL LL L- -2 22 2- -2 2s s- -2 2s s2 22 2- -s s t tt t- -1 1+ + e es s1 1e e1 1e e+ + +s ss se eF F s s = = f f t t- -u u t t- -F F s s | |11121212|22ssstu t
16、tu tts 所以L LL LL LL L- -2 2- -2 22 22 2t tt t- -2 21 1+ + e e1 1e e+ +s ss s2425 111053.p2 22 22 22 22 22 22 2t t0 0t t0 0s ss s + + a a1 1a as s1 1= =s si in na at t * * c co os sa at ta aa as s + + a as s + + a a1 1= =s si in na a c co os sa a t t- - d da a1 1= = s si in na at t+ + c co os s 2 2a
17、a- - a at t d d2 2a at t= =s si in na at t2 2a aL LL L26272829 54对两边进变换t t- - t t- -0 0- - t t- - t t- -i i t tt t - -i i t t- -t t - -i i t t- - -0 0- - 1 1- -i i t t- - 1 1+ +i i t t2 20 00 02 22 22 22 22 2p p6 65 51 1x x t t - - 4 4x x t t d dt t= = e e解解:e e= =e ee ed dt t= =e e e ed dt t+ +e e
18、e ed dt t1 11 12 2= =e ed dt t+ +e ed dt t= =+ += =1 1- - i i 1 1+ + i i 1 1+ +原原方方程程行行付付氏氏得得:1 12 2i i X X s sX X s s = =i i 1 1+ +- -2 2i i 1 1所所以以X X s s = =1 1+ + 4 4+ +1 12 2i i 2 2i i = =- -3 3 4 4+ +1 1+ +F30 11转 质- -t tt t2 2 t t- -2 2 t t- - t tt t2 2t tt t- - t t- -2 2 t t1 11 1= = u u t t
19、e e, ,= = u ut te e翻翻 性性+ + i i - - i i 1 1所所以以x x t t = =u u - - t te e - - u u t te e+ + u u t te e- - u u - - t te e3 31 1e e - - e et t 0 03 3FF 112 22 21 12 2i i 2 2i i x x t t = =- -3 34 4+ +1 1+ +1 11 11 11 11 1= =- -+ +- -3 32 2- - i i 2 2+ + i i 1 1+ + i i 1 1- - i i FF31 54对两边进变换t t- - t t- -0 0- - t t- - t t- -i i t tt t - -i i t t- -t t - -i i t t- - -0 0- - 1 1- -i i t t- - 1 1+ +i i t t2 20 00 02 22 22 22 22 2p p6 65 51 1x x t t -
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度红酒年份酒限量版包装设计合同
- 2025年度股权质押借款合同债权转让协议
- 2025年度企业内部控制体系设计合同模板
- 2025年度智能仓储货物承包运输合同模板
- 现代工厂的安全文化培育与推广策略
- (湘教版)七年级数学下册:6.1.3《众数》听评课记录
- 注塑成型技术下的产品质量控制策略
- 2025年度康复理疗中心运营管理咨询合同范本
- 2025年度脚手架材料采购及施工监理合同模板
- 2025年城市排水系统建设开工合同样本
- 护理人文知识培训课件
- 国家综合性消防救援队伍消防员管理规定
- 河南省三门峡市各县区乡镇行政村村庄村名居民村民委员会明细
- 2023年全国各地高考英语试卷:完形填空汇编(9篇-含解析)
- 五年级上册数学习题课件 简便计算专项整理 苏教版 共21张
- 疼痛科的建立和建设
- 运动技能学习PPT课件
- 第六编元代文学
- 高考语文古诗词必背重点提纲
- 超星尔雅学习通《大学生心理健康教育(兰州大学版)》章节测试含答案
- 2020译林版高中英语选择性必修二单词默写表
评论
0/150
提交评论