版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、一元一次方程和它的解法学习目标1了解一元一次方程的概念,灵活运用等式的基本性质和移项法则解一元一次方程,会对方程的解进行检验;毛毛2通过对一元一次方程的解法步骤的灵活运用,培养学生的运算能力;3通过解方程的教学,了解“未知”可以转化为“已知”的思想知识讲解一、重点、难点分析本节的重点是移项法则,一元一次方程的概念及其解法,难点是对一元一次方程解法步骤的灵活运用掌握移项要变号和去分母、去括号的方法是正确地解一元一次方程的关键学习中应注意以下几点: 1关于移项 方程中的任何一项都可以在改变符号后,从方程的一边移到另一边,即可以
2、把方程右边的项改变符号后移到方程的左边也可以把方程左边的项改变符号后移到方程的右边移项中常犯的错误是忘记变号还要注意移项与在方程的一边交换两项的位置有本质的区别如果等号同一边的项的位置发生变化,这些项不变号,因为改变某一项在多项式中的排列顺序,是以加法交换律与给合律为根据的一种变形,但如果把某些项从等号的一边移到另一边时,这些项都要变号 2关于去分母 去分母就是根据等式性质2在方程两边每一项都乘以分母的最小公倍数常犯错误是漏乘不含有分母的项如把 变形为 这一项漏乘分母的最小公倍数6,为避勉这类错误,解题时可多写一步 再用分
3、配律展开再一个容易错误的地方是对分数线的理解不全面分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上,如上例提到的 3关于去括号 去括号易犯的错误是括号前面是负号,而去括号时忘记变号;一个数乘以一个多项式,去括号时漏乘多项式的后面各项如 及 都是错误的 4解方程的思路:解一元一次方程实际上就是将一个方程利用等式的性质进行一系列的变形最终化为 的形式,然后再解 即可二、知识结构三、教法建议1本小节开头的两个例子的目的是引入移项法则移项法则不仅适用
4、于解方程,而且适用于解不等式;不仅适用于移动整式项,而且适用于移动有意义的非整式项因此说移项法则是等式性质1的推论不太合理但对初一学生来说,用等式性质1来引入移项法则是容易接受的 第一个例子是解方程 学生见到这种方程后,如果先想到用小学里学过的逆运算的方法来求解,那么教师应告诉学生,我们现在要学习一种新的解法,它能用来解较为复杂的方程,请大家先回忆在本教科书第一章中的解法,然后启发学生根据等式性质1来解这个方程在分析方程 的解法过程中,教科书提出了移项法则,即方程左边的项可以在改变符号后移到方程右边;在分析方程 的解法过程中,教科书又提出方程右边的项可以在改
5、变符号后移到方程左边讲完这两个例子后,要引导学生归纳出移项法则方程中的任何一项,都可以在改变符号后,从方程的对边移到另一边教学中可以利用教科书上的两个图来讲移项法则,以帮助学生理解2判定一个方程是不是一元一次方程,先将方程经过去分母、去括号、移项、合并同类项等变形如果能化为最简形式 ,或标准形式 ,那么,它就是一元一次方程;否则,就不是一元一次方程 方程 或 ,只有当 时,才是一元一次方程;反之,如果明确指出方程 或 是一元一次方程,就隐含着已知条件 .3所移动的是方程中的项,并且是从方程的一边移到另一边,而不是在方程的一边交换两项的位置;
6、60; 移项时要变号,不变号不能移项4在定义了一元一次方程之后,教科书总结了解这类方程的一般步骤这时要强调指出,由于方程的形式不同,在解方程时这五个步骤并不一定都要用到,并且也不一定完全按照步骤作。又例如,在解方程 时,先移项比先去括号更为简便因此对于解一元一次方程的一般步骤,要根据具体情况灵活运用,不宜死套另外还应指出,在上述一般步骤中的第四步“合并同类项”,“把方程化成 的形式”是其中必不可少的一步,在教学中应予以强调5在方程的分母中含有小数,通常将分母中的小数化成整数,然后通过去分母等步骤来求解另外,当方程比较复杂时,由于解题步骤较多,容易出错,必须验根,检验答案是否正确,但
7、检验不是必要步骤 在一个公式中,有一个字母表示未知数,在其余字母都表示已知数时求这个未知数的值这类问题在实际应用中和在学生以后学习物理、化学等课程时,都经常会遇到,因此要予以足够的重视典型例题例1 判断下面的移项对不对,如果不对,应怎样改正?(1)从 得到 ;(2)从 得到 ;(3)从 得到 ;(4)从 得到 ;分析:判断移项是否正确,关键看移项后的符号是否改变,一定要牢记“移项变号”注意:没有移动的项,符号不要改变;另外等号同一边的项互相调换位置,这些项的符号不改变解:(1)不对,等号左边的7移到等号右边应改变符号正确应为: (2)对(3)不对等号左端的2移
8、到等号右边改变了符号,但等号右边的 移到等号左边没有改变等号正确应为: (4)不对等号右边的 移到等号左边,变为 是对的,但等号右边的2仍在等号的右边没有移项,不应变号正确应为: 例2 解方程:(1) ; (2) ; (3) ; (4) 分析:本题都是简单的方程,只要根据等式的性质2把等号左边未知的系数化为1,即可得到方程的解解:(1)把 的系数化为1,根据等式的性质2在方程两边同时除以3得, 检验 左边 ,右边 左边=右边所以 是原方程的解(2)把 的系数化为1,根据等式的性质2,在方程两边同时
9、除以4得, 检验:左边 ,右边=2,左边=右边所以 是原方程的解(3)把 的系数化为1根据等式性质2,在方程的两边同时乘以 得,检验,左边 右边 左边=-右边,所以 是原方程的解;(4)把 的系数化为1,根据等式的性质2,在方程两边同时乘以2得:检验:左边 ,右边 ,左边=右边所以 是原方程的解说明: 在应用等式的性质2把未知数的系数化为1时,什么情况适宜用“乘”,什么情况下适宜用“除”,要根据未知数的系数而定一般情况来说当未知数的系数是整数时,适宜用除;当未知数的系数是分数(或小数)适宜用乘(乘以未知数系数的倒数)要养成进行检验的习惯,但检验可不必书面写出例3 解方程:(1) ;
10、 (2) ;(3) ; (4) 分析: 解方程的思路是将已知方程通过一系列变形化为最简方程 的形式,也就是说把 作为已知方程变形的目标因此,要把已知方程转化为最简化,就要把含有未知数的项都移到等号的一边,常数项移到等号的另一端解法一:(1)移项,得:合并同类项,得: (2)移项,得 合并同类项,得 ,系数化成1,得, 解法二:移项,得, ,合并同类项,得:系数化为1,得,(3)移项,得: 合并
11、同类项,得 系数化为1,得(4)移项,得:合并同类项,得, 系数化为1,得 说明:第(2)题采用了两种不同的移项方法,目的都是将未知数的项移到等号的一端,已知数移到等号另一端,事实上,其它的题目也都可以采用不同的移项方法,要根据题目的特点,寻找简捷的移项方法例4 解方程:(1) ;(2) 分析:为了把已知方程化为最简方程 的形式,首先要去括号,然后再作其它变形解:(1)去括号,得:移项,得:合并同类项,得 系数化成1,得 说明: 用分配律去括号时,不要漏乘括号中的项,并且不要搞错符号; 不是方程的解,必须把 系数化为1,
12、得 才算完成了解方程过程(2)去小括号: 合并括号里的同类项,得: ,去中括号,得: 合并同类项,得: 移项,得说明: 方程中有多重括号时,一般应按先去小括号,再去中括号,再去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算例5 解方程:(1) ; (2) 分析: 方程中含有分母,应根据等式的性质2,方程两边同乘以各分母的最小公倍数,从而去掉分母,然后再作其它变形解:(1)方程两边都乘以4,去分母,得:,移项,得:,合并同类项,
13、得:,系数化成1,得 (2)方程两边都乘以12,去分母,得:去括号,得 移项,得 ,合并同类项,得: 系数化成1,得: 说明: 去分母所选的乘数应是所有分母的最小公倍数,不应遗漏;用分母的最小公倍数去乘方程的两边时,不要遗漏掉等号两边不含分母的项如(2)题的“1”去掉分母以后,分数线也同时去掉,分子上的多项式用括号括起来(当式子前是正号时,可省略括号)
14、60; 例6 解方程:(1) ;(2) 解:(1)移项,得: 合并同类项,得:,移项,得 合并同类项,得 (2)先去中括号得 去小括号,得,移项,得,合并同类项,得 ,系数化成1,得 说明: 在解方程时,要注意分析方程的结构特点,有针对性地确定解题方案,灵活地安排解题步骤例7 已知关于 的方程 的根是2,求 的值解法一:因为 是方程 的根,所以 代入方程左右两边一定相等,即:,解这个以 为未知数的方程,得
15、:解法二:把原方程看作以 为未知数的一元一次方程, 看作已知数求解; 把 代入上式,得:说明: 解法一是利用方程解的概念,将 代入原方程,使原方程转化为以 为未知数的一元一次方程,从而求出 解法二是将原方程直接看成以 为未知数的一元一次方程,解出 用字母 的代数式表示,再将 代入代数式中求得 例8 甲、乙两工程队共有100人,甲队人数比己队人数的3倍少20人求甲、乙两队各有多少人?
16、; 分析:题中已知甲、乙两工程队共有100人,由此可知等量关系为: 甲队人数十乙队人数=甲、乙两队总人数设乙队人数为x人,再分析上述相等关系中的左右两边,可得下表:左边右边甲队人数()人,乙队人数人甲、乙两工程队共有100人有了这个表,方程就不难列出来了解:设乙队有 人,则甲队有 人根据题意,得 解这个方程,得 答:甲队有70人;乙队有30人说明:(1)先弄清题意,找出相等关系,再按照相等关系来选择未知数和列代数式,比先设未知数,再列出含有未知数的代数式,再找相等关系更为合理(2)所列方程两边的代数式的意义必须
17、一致,单位要统一,数量关系一定要相等(3)要养成“验”的好习惯即所求结果要使实际问题有意义(4)不要漏写“答”“设”和“答”都不要丢掉单位名称(5)分析过程可以只写在草稿纸上,但一定要认真练习一、习题精选1填空题(1)解方程中移项变号的根据是 ;(2)一元一次方程的标准形式是 ;(3)解一元一次方程的一般步骤有
18、 _ ;(4)方程 的解是 ;(5)方程 的解是 ;(6)方程 的解是 ;(7)方程 的解是
19、60; ;(8)方程 的解是 ;(9)方程 的解是 ;(10)解方程 去分母,得 _ 。2解方程:(1) ; (2) ; (3) ; (
20、4) ;(5) ; (6) 3解方程:(1) ;(2) ;(3) ;(4) ;4解方程:(1) ; (2) ;(3) (4) 5解方程:(1) ; (2) ;6解方程:(1) ; (2) ;(3) ; (4) 7根据下列条件列出方程,然后求出某数。(1)某数的 比它的相反数小5;(2)某数与3的差的一半比9与这个数的差少6;(3)某数与6的差的3倍等于这个数的相反数;(4)某数的7倍与10%的和恰好是它的5%与3的差。8(1) x取何值,代数式 与 的值相等?(2) x取何值,代数式 与 的值相等?答案:1填空题(1)等式的性质1; (2) ;(3)去分母,去括号,移项,合并同类项,系数化1。(4) ; (5) ; (6) ; (7) ;(8) ; (9) ; &
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年跨境电商平台入驻及货款垫付合作协议3篇
- 2025版科技创新反担保合同与研发设备抵押协议3篇
- 医院与保险公司合同管理
- 畜牧业发展承诺书网上填报
- 废旧轮胎处理合同
- 艺术空间租赁协议
- 消防安全评估防水施工合同
- 古玩市场物业员工招聘合同
- 个人工作室客户意见箱管理方案
- 森林防火维护爆炸品库房管理方案
- 2024年广东珠海水务环境控股集团有限公司招聘笔试参考题库含答案解析
- 培训机构五年发展规划方案
- 《销售主管竞聘》课件
- 青少年型青光眼个案护理
- 小学数学六年级解方程练习300题及答案
- 医院药房年终工作总结
- 纯化水制备工艺讲座(新)课件
- 整理收纳师职业规划
- 整体爬升钢平台模板工程技术规程
- DB32/T 4700-2024 蓄热式焚烧炉系统安全技术要求
- 医疗机构医院临床微生物学检验标本的采集和转运指南
评论
0/150
提交评论