北京市各区高三模拟试题选修31磁场_第1页
北京市各区高三模拟试题选修31磁场_第2页
北京市各区高三模拟试题选修31磁场_第3页
北京市各区高三模拟试题选修31磁场_第4页
北京市各区高三模拟试题选修31磁场_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、北京市各区2011年高三物理模拟试题分类汇编:选修3-1磁场(2011东城二模)如图所示,两个带等量正电荷的小球与水平放置的光滑绝缘杆相连,并固定在垂直纸面向外的匀强磁场中,杆上套有一个带正电的小环,带电小球和小环都可视为点电荷。若将小环由静止从图示位置开始释放,在小环运动的过程中,下列说法正确的是b+a小环的加速度的大小不断变化b小环的速度将一直增大c小环所受的洛伦兹力一直增大d小环所受的洛伦兹力方向始终不变(2011朝阳二模)如图所示,长方体发电导管的前后两个侧面的绝缘体,上下两个侧面是电阻可忽略的导体电极,两极间距为d,极板面积为s,这两个极与电变电阻r相连。在垂直前后侧面的方向上,有一

2、匀强磁场,磁感应强度大小为b。发电导管内有电阻率为的高温电离气体,气体以速度v向右流动,并通过专用管道导出。由于运动的电离气体受到磁场的作用,将产生大小不变的电动势,若不计气体流动时的阻力,由以上条件可推导出可变电阻消耗的电功率。调节可变电阻的阻值,根据上面的公式或你所学过的物理知识,可求得可变电阻r消耗电功率的最大值为( )abcd答案:b(2011丰台二模)(18分)飞行时间质谱仪可以对气体分子进行分析。飞行时间质谱仪主要由脉冲阀、激光器、加速电场、偏转电场和探测器组成,探测器可以在轨道上移动以捕获和观察带电粒子。整个装置处于真空状态。加速电场和偏转电场电压可以调节,只要测量出带电粒子的飞

3、行时间,即可以测量出其比荷。如图所示,脉冲阀p喷出微量气体,经激光照射产生不同价位的离子,自a板小孔进入a、b间的加速电场,从b板小孔射出,沿中线方向进入m、n板间的偏转控制区,到达探测器。已知加速电场a、b板间距为d,偏转电场极板m、n的长度为l1,宽度为l2。不计离子重力及进入a板时的初速度。(1)设离子带电粒子比荷为k(k=q/m),如a、b间的加速电压为u1,试求离子进入偏转电场时的初速度v0;(2)当a、b间的电压为u1时,在m、n间加上适当的电压u2,离子从脉冲阀p喷出到到达探测器的全部飞行时间为t。请推导出离子k比荷的表达式;(3)在某次测量中探测器始终无法观察到离子,分析原因是

4、离子偏转量过大,打到极板上,请说明如何调节才能观察到离子?dl1mlns探测器激光束pbal2轨道(2011海淀二模)(20分)在水平地面上方的足够大的真空室内存在着匀强电场和匀强磁场共存的区域,且电场与磁场的方向始终平行,在距离水平地面的某一高度处,有一个带电量为q、质量为m的带负电的质点,以垂直于电场方向的水平初速度v0进入该真空室内,取重力加速度为g。求:(1)若要使带电质点进入真空室后做半径为r的匀速圆周运动,求磁感应强度b0的大小及所有可能的方向;(2)当磁感应强度的大小变为b时,为保证带电质点进入真空室后做匀速直线运动,求此时电场强度e的大小和方向应满足的条件;(3)若带电质点在满

5、足第(2)问条件下运动到空中某一位置m点时立即撤去磁场,此后运动到空中另一位置n点时的速度大小为v,求m、n两点间的竖直高度h及经过n点时重力做功的功率。答案:(20分)解:(1)由于带电质点在匀强电场e0和匀强磁场b0共存的区域做匀速圆周运动,所以受到的电场力必定与重力平衡,即 qe0 =mg (3分)根据牛顿第二定律和向心力公式 (2分)答图1fmgf电f洛boq甲eqf电ff洛mgeb乙o解得 (1分)磁感应强度b0为竖直向上或竖直向下。(2)磁场b和电场e方向相同时,如答图1甲所示;磁场b和电场e方向相反时,如答图1乙所示。由于带电质点做匀速直线运动,由平衡条件和几何关系可知解得 (2

6、分)图中的角为 (2分)即电场e的方向为沿与重力方向夹角且斜向下的一切方向,或,且斜向下方的一切方向。 (2分)(3)当撤去磁场后,带电质点只受电场力和重力作用,这两个力的合力大小为qv0b,方向既垂直初速度v0的方向也垂直电场e的方向。设空中m、n两点间的竖直高度为h,因电场力在这个过程中不做功,则由机械能守恒定律得m v2=mgh+m v02 (2分)解得 (2分)因带电质点做类平抛运动,由速度的分解可求得带电质点到达n点时沿合力方向的分速度大小为 vn= (2分)又因电场力在这个过程中不做功,带电质点到达n点时,重力做功的功率等于合外力在此时的瞬时功率,解得 pn=qv0bvn= (2分

7、) (2011东城二模)(20分)如图所示装置由加速电场、偏转电场和偏转磁场组成。偏转电场处在加有电压的相距为d的两块水平平行放置的导体板之间,匀强磁场水平宽度为l,竖直宽度足够大,处在偏转电场的右边,如图甲所示。大量电子(其重力不计)由静止开始,经加速电场加速后,连续不断地沿平行板的方向从两板正中间射入偏转电场。当两板没有加电压时,这些电子通过两板之间的时间为2t0,当在两板间加上如图乙所示的周期为2t0、幅值恒为u0的电压时,所有电子均能通过电场,穿过磁场,最后打在竖直放置的荧光屏上(已知电子的质量为m、电荷量为e)。求:(1)如果电子在t=0时刻进入偏转电场,求它离开偏转电场时的侧向位移

8、大小;(2)通过计算说明,所有通过偏转电场的电子的偏向角(电子离开偏转电场的速度方向与进入电场速度方向的夹角)都相同。(3)要使电子能垂直打在荧光屏上,匀强磁场的磁感应强度为多少?乙tu0u02t0t03t04t0e+lbu-+-荧光屏甲答案:(20分)解:(1)(8分)在t=0时刻,电子进入偏转电场,ox方向(水平向右为正)做匀速直线运动。(2分)oy方向(竖直向上为正)在0t0时间内受电场力作用做匀加速运动,(2分)在t02t0时间内做匀速直线运动,速度(2分)侧向位移得 (2分)(2)(6分)设电子以初速度v0=vx进入偏转电场,在偏转电场中受电场力作用而加速。不管电子是何时进入偏转电场

9、,在它穿过电场的2t0时间内,其oy方向的加速度或者是(电压为u0时),或者是0(电压为0时)。 (2分),它在oy方向上速度增加量都为。(2分)因此所有电子离开偏转电场时的oy方向的分速度都相等为;ox方向的分速度都为v0=vx,所有电子离开偏转电场的偏向角都相同。(2分)(3)(6分)设电子从偏转电场中射出时的偏向角为q ,电子进入匀强磁场后做圆周运动垂直打在荧光屏上,如图所示。电子在磁场中运动的半径: (2分)lrvt设电子从偏转电场中出来时的速度为vt,则电子从偏转电场中射出时的偏向角为: (1分)电子进入磁场后做圆周运动,其半径(1分)由上述四式可得:。(2分)(2011朝阳二模)(

10、18分)如图甲所示,水平放置的两平行金属板的板长l不超过0.2m,oo为两金属板的中线。在金属板的右侧有一区域足够大的匀强磁场,其竖直左边界mn与oo垂直,磁感应强度的大小b=00l0t,方向垂直子纸面向里。两金属板间的电压v随时间t变化的规律如图乙所示,现有带正电的粒子连续不断地以速度v0=l.0×105m/s,沿两金属板的中线射人电场中。已知带电粒子的荷质比=10×l08c/kg,粒子所受重力和粒子间的库仑力忽略不计,不考虑粒子高速运动的相对论效应。在每个粒子通过电场区域的时间内可以认为两金属板间的电场强度是不变的。(1)在t=0.1s时刻射入电场的带电粒子恰能从平行金

11、属板边缘射出,求该粒子射出电场时速度的大小;(2)对于所有经过电场射入磁场的带电粒子,设其射入磁场和射出磁场两点间的距离为d,请你证明d是一个不变量。(3)请你通过必要的计算说明:为什么在每个粒子通过电场区域的时间内,可以认为两金属板间的电场强度是不变的。(2011朝阳二模)(20分)如图所示,“×”型光滑金属导轨abcd固定在绝缘水平面上,ab和cd足够长aoc =60°。虚线mn与bod的平分线垂直,o点到mn的距离为l。mn左侧是磁感 应强度大小为b、方向竖直向下的匀强磁场。一轻弹簧右端固定,其轴线与bod的平分线重合,自然伸长时左端恰在o点。一质量为m的导体棒ef平

12、行于mn置于导轨上,导体棒与导轨接触良好。某时刻使导体棒从mn的右侧处由静止开始释放,导体棒在压缩弹簧的作用下向左运动,当导体棒运动到o点时弹簧与导体棒分离。导体棒由mn运动到o点的过程中做匀速直线运动。导体棒始终与mn平行。已知导体棒与弹簧彼此绝缘,导体棒和导轨单位长度的电阻均为r0,弹簧被压缩后所获得的弹性势能可用公式ep=kx2计算,k为弹簧的劲度系数,x为弹簧的形变量。(1)证明:导体棒在磁场中做匀速直线运动的过程中,感应电流的大小保持不变;(2)求弹簧的劲度系数k和导体棒在磁场中做匀速直线运动时速度v0的大小;(3)求导体棒最终静止时的位置距o点的距离。(2011西城二模)(20分)

13、如图所示,在x-o-y坐标系中,以(r,0)为圆心、r为半径的圆形区域内存在匀强磁场,磁场的磁感应强度大小为b,方向垂直于纸面向里。在y > r的足够大的区域内,存在沿y轴负方向的匀强电场,场强大小为e。从o点以相同速率向不同方向发射质子,质子的运动轨迹均在纸面内,且质子在磁场中运动的轨迹半径也为r。已知质子的电荷量为q,质量为m,不计质子所受重力及质子间相互作用力的影响。(1)求质子射入磁场时速度的大小;(2)若质子沿x轴正方向射入磁场,求质子从o点进入磁场到第二次离开磁场经历的时间;xyoeb(3)若质子沿与x轴正方向成夹角的方向从o点射入第一象限的磁场中,求质子在磁场中运动的总时间

14、。(2011昌平二模)(20分)如图(甲)所示,在直角坐标系0xl区域内有沿y轴正方向的匀强电场,右侧有一个以点(3l,0)为圆心、半径为l的圆形区域,圆形区域与x轴的交点分别为m、n。现有一质量为m,带电量为e的电子,从y轴上的a点以速度v0沿x轴正方向射入电场,飞出电场后从m点进入圆形区域,速度方向与x轴夹角为30°。此时在圆形区域加如图(乙)所示周期性变化的磁场,以垂直于纸面向外为磁场正方向),最后电子运动一段时间后从n飞出,速度方向与进入磁场时的速度方向相同(与x轴夹角也为30°)。求: 电子进入圆形磁场区域时的速度大小; 0xl区域内匀强电场场强e的大小; 写出圆

15、形磁场区域磁感应强度b0的大小、磁场变化周期t各应满足的表达式。yb0-b0t2ttbo(甲)xv0el2l3l4lmnao(乙)答案:(20分)解: 电子在电场中作类平抛运动,射出电场时,如图1所示。由速度关系: (2分)y解得 (2分)ao(1)xv0el2l3l4lmn(2)v0vvymn30°60°ro2l 由速度关系得 (2分) 在竖直方向 (2分) 解得 (2分) 在磁场变化的半个周期内粒子的偏转角为60°(如图2),所以,在磁场变化的半个周期内,粒子在x轴方向上的位移恰好等于r。粒子到达n点而且速度符合要求的空间条件是: 2nr=2l(2分) 2 电

16、子在磁场作圆周运动的轨道半径(2分) 解得 (n=1、2、3) (2分)若粒子在磁场变化的半个周期恰好转过圆周,同时mn间运动时间是磁场变化周期的整数倍时,可使粒子到达n点并且速度满足题设要求。应满足的时间条件: (1分) (1分) 代入t的表达式得:(n=1、2、3) (2分)(2011东城一模)为监测某化工厂的含有离子的污水排放情况,技术人员在排污管中安装了监测装置,该装置的核心部分是一个用绝缘材料制成的空腔,其宽和高分别为b和c,左、右两端开口与排污管相连,如图所示。在垂直于上、下底面方向加磁感应强度大小为b的匀强磁场,在空腔前、后两个侧面上各有长为a的相互平行且正对的电极m和n,m和n

17、与内阻为r的电流表相连。污水从左向右流经该装置时,电流表将显示出污水排放情况。下列说法中错误的是bcamnbam板比n板电势低b污水中离子浓度越高,则电流表的示数越小c污水流量越大,则电流表的示数越大d若只增大所加磁场的磁感应强度,则电流表的示数也增大(2011西城一模)如图所示,ab是圆o的一条直径,oc为圆的半径,aoc=90°,圆o所在空间有一匀强电场。相同的带正电的粒子,以相同的初动能ek0沿不同方向从a点出发,能够经过圆周上其他一些点,其中经过b点的粒子的动能为1.5 ek0,经过c点的粒子的动能为2 ek0。不计粒子所受重力及粒子间相互作用的影响。下列说法中正确的是a经过

18、c点的粒子的动能一定比经过圆周上其他点的粒子的动能大b经过c点的粒子的动能一定比经过圆周上其他点的粒子的动能小c无论粒子在a点的速度方向如何,圆周上总有些位置粒子无法达到d改变粒子在a点的速度方向,总能使圆周上任何位置都有粒子达到答案:d oxb30°v图3y(2011海淀零模)如图3所示,在直角坐标系的第一象限内有垂直纸面向里的匀强磁场,正、负离子分别以相同的速度从原点o进入磁场,进入磁场的速度方向与x轴正方向夹角为30°。已知正离子运动的轨迹半径大于负离子,则可以判断出 ( )a正离子的比荷大于负离子b正离子在磁场中受到的向心力大于负离子c正离子在磁场中运动的时间大于负

19、离子d正离子离开磁场时的位置到原点的距离大于负离子答案:c图4bfxy(2011海淀一模)如图4所示,光滑的水平桌面处在方向竖直向下的匀强磁场中,桌面上平放着一根一端开口、内壁光滑的绝缘细管,细管封闭端有一带电小球,小球直径略小于管的直径,细管的中心轴线沿y轴方向。在水平拉力f作用下,试管沿x轴方向匀速运动,带电小球能从细管口处飞出。带电小球在离开细管前的运动过程中,关于小球运动的加速度a、沿y轴方向的速度vy、拉力f以及管壁对小球的弹力做功的功率p随时间t变化的图象分别如图5所示,其中正确的是aotabotvydotp图5cotf答案:d (2011海淀一模反馈)如右图所示,下端封闭、上端开

20、口、内壁光滑的细玻璃管竖直放置,管底有一带电的小球整个装置以水平向右的速度v匀速运动,沿垂直于磁场的方向进入方向水平的匀强磁场,由于水平拉力f的作用,玻璃管在磁场中的速度保持不变,最终小球从上端开口飞出,小球的电荷量始终保持不变,则从玻璃管进入磁场到小球运动到上端开口的过程中,关于小球运动的加速度a、沿竖直方向的速度vy、拉力f以及管壁对小球的弹力做功的功率p随时间t变化的图象分别如下图所示,其中正确的是 ( )aotabotvydotpcotf答案:d (2011延庆一模)如图表示水平方向的匀强磁场和竖直方向的匀强电场叠加区域,一个质量是m带电量是q的质点b恰好能静止在区域中间,另一个质量为

21、2m,带电量也为q的质点a恰好能以某一速度沿着垂直于磁场、电场方向做匀速直线运动,且正好与静止的质点b发生正碰,碰后两质点粘在一起运动,碰撞的过程无电量损失,则下列正确的是a··ba碰后两质点的运动向下偏且动能增加b碰后两质点的运动向上偏且动能增加c碰后两质点的运动向上偏且动能减少d碰后两质点的运动向下偏且动能减少答案:c (2011怀柔一模)如图5,ab和cd为两条相距较远的平行直线,ab的左侧和 cd 的右侧都有磁感应强度为b、方向垂直纸面向里的匀强磁场。甲、乙两带电体分别从图中的a、b两点以不同的初速度开始向两边运动,它们在c点碰撞后结为一体向右运动。轨迹如图,闭合曲

22、线是由两个半圆及与半圆相切的两条 线段组成,则下面说法正确的是(不计重力、阻力)a开始时甲的速度一定比乙大b甲的带电荷量一定比乙小c甲乙结合后,仍在原闭合曲线上运动d甲乙结合后,会离开原闭合曲线运动选择题 共120分)答案:c (2011东城一模)(18分)回旋加速器是用来加速带电粒子的装置,如图所示。它的核心部分是两个d形金属盒,两盒相距很近(缝隙的宽度远小于盒半径),分别和高频交流电源相连接,使带电粒子每通过缝隙时恰好在最大电压下被加速。两盒放在匀强磁场中,磁场方向垂直于盒面,带电粒子在磁场中做圆周运动,粒子通过两盒的缝隙时反复被加速,直到最大圆周半径时通过特殊装置被引出。若d形盒半径为r

23、,所加磁场的磁感应强度为b。设两d形盒之间所加的交流电压的最大值为u,被加速的粒子为粒子,其质量为m、电量为q。粒子从d形盒中央开始被加速(初动能可以忽略),经若干次加速后,粒子从d形盒边缘被引出。求:(1)粒子被加速后获得的最大动能ek;(2)粒子在第n次加速后进入一个d形盒中的回旋半径与紧接着第n+1次加速后进入另一个d形盒后的回旋半径之比;(3)粒子在回旋加速器中运动的时间;(4)若使用此回旋加速器加速氘核,要想使氘核获得与粒子相同的动能,请你通过分析,提出一个简单可行的办法。(1)粒子在d形盒内做圆周运动,轨道半径达到最大时被引出,具有最大动能。设此时的速度为v,有 (1)可得粒子的最

24、大动能ek= (4分)(2)粒子被加速一次所获得的能量为qu,粒子被第n次和n+1次加速后的动能分别为 (2) (3)可得 (5分)(3)设粒子被电场加速的总次数为a,则ek= (4) 可得 a (5)粒子在加速器中运动的时间是粒子在d形盒中旋转a个半圆周的总时间t。 (6) (7) 解得 (5分)(4)加速器加速带电粒子的能量为ek=,由粒子换成氘核,有,则,即磁感应强度需增大为原来的倍;高频交流电源的周期,由粒子换为氘核时,交流电源的周期应为原来的倍。 (4分)b接交流电源甲s乙图12(2011海淀一模)(18分)在高能物理研究中,粒子加速器起着重要作用,而早期的加速器只能使带电粒子在高压电场中加速一次,因而粒子所能达到的能量受到高压技术的限制。1930年,earnest o. lawrence提出了回旋加速器的理论,他设想用磁场使带电粒子沿圆弧形轨道旋转,多次反复地通过高频加速电场,直至达到高能量。图12甲为earnest o. lawrence设计的回旋加速器的示意图。它由两个铝制d型

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论