相似三角形常见模型(总结材料)_第1页
相似三角形常见模型(总结材料)_第2页
相似三角形常见模型(总结材料)_第3页
相似三角形常见模型(总结材料)_第4页
相似三角形常见模型(总结材料)_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、实用文档第一部分相似三角形模型分析标准文案实用文档标准文案实用文档、相似三角形判定的基本模型认识(二) 8字型、反8字型标准文案实用文档(五)一线三直角型:标准文案标准文案标准文案标准文案(六)双垂型:标准文案标准文案标准文案标准文案、相似三角形判定的变化模型标准文案标准文案旋转型:由A字型旋转得到1-三一石亡 8字型拓展标准文案标准文案标准文案实用文档标准文案实用文档第二部分相似三角形典型例题讲解母子型相似三角形例1:如图,梯形 ABCDK AD/ BC对角线 AC BD交于点O, BE/ CD交CA延长线于E.求证:OC2 =OA OE .标准文案实用文档标准文案实用文档标准文案实用文档例

2、2:已知:如图, ABC中,点E在中线AD上, DEB =/ABC .求证:(1) DB2 二 DE DA ;(2) . DCE=/DAC .标准文案实用文档标准文案实用文档例3:已知:如图,等腰ABC中, AB= AC ADL BC于 D, CG/ ABBG分别交AD AC于E、F.标准文案实用文档A求证:BE2 二 EF EG .相关练习:1、如图,已知ABC的角平分线,EF为AD的垂直平分线.求证:FD 2二FB FC .标准文案实用文档标准文案实用文档标准文案实用文档2、已知:AD是Rt ABC中/A的平分线,/C=90°,EF是AD的垂直平分线交AD于MEF、BC的延长线交

3、于一点M求证: AM3A NMD; (2)ND2 =NC- NB3、已知:如图,在 ABC中,/ ACB=90 , CDLAB于 D, E 是AC上一点,CF丄BE于F。求证:EB- DF=AE- DB标准文案实用文档标准文案实用文档标准文案实用文档标准文案实用文档MEHDF5分)4. 在AABC中,AB=AC高AD与BE交于H, EF丄BC,垂足为F,延长AD到G,使DG=EF M是AH的中点。求证:GBM =905. (本题满分14分,第(1)小题满分4分,第(2)、( 3)小题满分各已知:如图,在 Rt ABC中, Z C=90° , BC=2, AG=4, P是斜边 AB一个

4、动点,PCL AB交边AC于点D (点D与点A C都不重合),E是射 线DC上一点,且Z EP=Z A.设A P两点的距离为x, BEP的面积为 y.(1) 求证:AE=2PE(2) 求y关于x的函数解析式,并写出它的定义域;(3)当厶BEP-与ABC相似时,求 BEP的面积.标准文案实用文档双垂型1如图,在 ABC中,/ A=60°, BD CE分别是AC AB上的高 求证:(ABDA ACE (2) ADEA ABC (3)BC=2ED2、如图,已知锐角厶ABC AD CE分别是求:点B到直线AC的距离。实用文档实用文档共享型相似三角形、 ABC是等边三角形,D、B C E在一条

5、直线上,/ DAE20,已知BD=1, CE=3 ,求等边三角形的边实用文档实用文档2、已知:如图,在 Rt ABC中, AB=AC / DAE45°.求证:(1 ) ABEA ACD(2) BC2=2BE CD .一线三等角型相似三角形A实用文档实用文档标准文案实用文档实用文档例1:如图,等边 ABC中,边长为6, D是BC上动点,/ EDf=60(1)求证: BD0A CFD(2)当 BD=1, FC=3 时,求 BE例2:( 1 )在 ABC中,AB = AC=5,BC =8,点P、Q分别在射线CB、AC上(点P不与点C、 点B重合),且保持.APQ =:/ABC. 若点P在线

6、段CB上(如图),且BP =6,求线段CQ的长; 若BP二x,CQ二y,求y与x之间的函数关系式,并写出函数的定义域;标准文案实用文档备用图备用图(2)正方形ABCD的边长为5 (如下图),点P、Q分别在直线CB、DC上(点P不与点C、点B重合),且保持NAPQ =90°当CQ =1时,求出线段BP的长.DCDCDC标准文案实用文档标准文案实用文档例 3 :已知在梯形 ABCE中, AD/ BC AD< BC 且 AD= 5, AB= DG= 2.(1)如图8, P为AD上的一点,满足/ BPC=Z A. 求证; ABPA DPC 求AP的长.(2)如果点P在AD边上移动(点P

7、与点A D不重合),且满足/ BPE=Z A, PE交直线BC于点E,同时交直线DC于点Q那么当点Q在线段DC的延长线上时,设 Aix, CQ= y,求y关于x的函数解析式,并写出函数的定义域;当C匡1时,写出AP的长.标准文案实用文档标准文案实用文档例4:如图,在梯形 ABCD中,AD / BC , AB二CD二BC = 6 , AD=3 点M为边BC的中点,以 M为顶点作 EMF,射线ME交腰AB于点E,射线MF交腰CD于点F,联结EF .(1) 求证: MEF BEM ;(2) 若厶BEM是以BM为腰的等腰三角形,求 EF的长;(3) 若EF _CD,求BE的长.标准文案实用文档标准文案

8、实用文档相关练习:1、如图,在 ABC中,AB = AC =8 , BC =10 ,D是BC边上的一个动点,点E在AC边上,且标准文案实用文档标准文案实用文档(1) 求证: ABDA DCE 如果BD =x, AE =y,求y与x的函数解析式,并写出自变量 当点D是BC的中点时,试说明厶 ADE是什么三角形,并说明理由.2、如图,已知在厶 ABC中, AB=AC=6, BC=5, D是AB上一点,BD=2, E是BC上一动点,联结 DE并作标准文案实用文档.DEF =/B,射线EF交线段AC于F.(1)求证: DBEA ECF(2)当F是线段AC中点时,求线段 BE的长;标准文案gC实用文档标

9、准文案gC实用文档(3)联结DF,如果 DEF与 DBE相似,求FC的长.标准文案gC实用文档B E C3、已知在梯形 ABCD中, AD/ BC A氏 BC 且 BC=6 , AB=DC=4,点 E 是AB的中点.(1)如图,P为BC上的一点,且 BP=2.求证: BEPo CPD标准文案gC实用文档(2)如果点P在BC边上移动(点P与点B C不重合),且满足/EPF=Z C, PF交直线CD于点F,同标准文案gC实用文档标准文案gC实用文档域;C(4)AE =1,试求GMN的面积.时交直线AD于点M那么当点F在线段CD的延长线上时,设 BP=x, DF= y,求y关于x的函数解析式,并写出

10、函数的定义备用图)4、如图,已知边长为3的等边 ABC,点F在边BC上,CF胡,点E是射线BA上一动点,以线段EF为边向右侧作等边EFG,直线EG, FG交直线AC于点M , N ,(1) 写出图中与 BEF相似的三角形;(2) 证明其中一对三角形相似; 设BE =x,MN = y,求y与x之间的函数关系式,并写出自变量x的取值范围;标准文案gC实用文档标准文案gC实用文档备用图标准文案gC实用文档一线三直角型相似三角形例1、已知矩形ABCD中,CD=2 AD=3,点P是AD上的一个动点,且和点A,D不重合,过点P作PE _ CP ,交边AB于点E,设PD二x,AE二y,求y关于x的函数关系式

11、,并写出 x的取值范围。标准文案实用文档标准文案实用文档例 2、在 ABC 中,.C =90°,AC =4, BC =3,0是 AB上的一点,且A0AB2,点P是AC上的一个动5点,PQ _0P交线段BC于点Q,(不与点B,C重合),设AP =x,CQ =y,试求y关于x的函数关系,并写出定义域。【练习1】3在直角 ABC中,C =90°, AB =5,tanB,点D是BC的中点,点E是AB边上的动点,DF _ DE4交射线AC于点F(1)、求AC和 BC的长(2)、当EF / BC时,求BE的长。(3)、连结EF,当也DEF和也ABC相似时,求BE的长。标准文案实用文档标

12、准文案实用文档【练习2】标准文案实用文档在直角三角形 ABC中,/ C =90°, AB二BC, D是AB边上的一点,E是在AC边上的一个动点,(与A,C不重合),DF _ DE, DF与射线BC相交于点F.(1) 、当点D是边AB的中点时,求证: DE =DF(2) 、当竺二m,求21的值DBDFAD(3)、当 AC = BC = 6,DB=,设 AE =x,BF2BB二y,求y关于x的函数关系式,并写出定义域3【练习4】如图,在:ABC中,.C =90 , AC =6, tan B , D是BC边的中点,E为AB边上4的一个动点,作.DEF -90,EF交射线BC于点F 设BE =x ,=BED的面积为y (1 )求y关于x的函数关系式,并写出自变量 x的取值范围;(2)如果以B、E、F为顶点的三角形与 BED相似,求 BED的面积.【练5】、(2015年黄浦一模25)如图,在梯形 ABCD 中

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论