版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、复习引入复习引入问题问题1 函数函数f (x)x2. 在在(, 0上是上是减函数减函数,在在0, +)上是上是增函数增函数. 当当x0时,时,f (x)f (0), x0时,时, f (x)f (0). 从而从而xR,都有,都有f (x) f (0).因此因此x0时,时,f (0)是函数值中的是函数值中的最小值最小值.第1页/共22页复习引入复习引入问题问题2 函数函数f (x)x2. 同理可知同理可知xR,都有都有f (x)f (0). 即即x0时,时,f (0)是函数值中的是函数值中的最大值最大值.第2页/共22页函数最大值概念:函数最大值概念:讲授新课讲授新课第3页/共22页函数最大值概
2、念:函数最大值概念:一般地,设函数一般地,设函数yf (x)的定义域为的定义域为I. 如果存在实数如果存在实数M,满足:,满足:讲授新课讲授新课第4页/共22页函数最大值概念:函数最大值概念:一般地,设函数一般地,设函数yf (x)的定义域为的定义域为I. 如果存在实数如果存在实数M,满足:,满足:(1)对于任意对于任意xI,都有,都有f (x)M.讲授新课讲授新课第5页/共22页函数最大值概念:函数最大值概念:一般地,设函数一般地,设函数yf (x)的定义域为的定义域为I. 如果存在实数如果存在实数M,满足:,满足:(1)对于任意对于任意xI,都有,都有f (x)M.(2)存在存在x0I,使
3、得,使得f (x0)M.讲授新课讲授新课第6页/共22页函数最大值概念:函数最大值概念:一般地,设函数一般地,设函数yf (x)的定义域为的定义域为I. 如果存在实数如果存在实数M,满足:,满足:(1)对于任意对于任意xI,都有,都有f (x)M.(2)存在存在x0I,使得,使得f (x0)M.那么,称那么,称M是函数是函数yf (x)的的最大值最大值.讲授新课讲授新课第7页/共22页函数最小值概念:函数最小值概念:讲授新课讲授新课第8页/共22页函数最小值概念:函数最小值概念:一般地,设函数一般地,设函数yf (x)的定义域为的定义域为I.如果存在实数如果存在实数M,满足:,满足:讲授新课讲
4、授新课第9页/共22页函数最小值概念:函数最小值概念:一般地,设函数一般地,设函数yf (x)的定义域为的定义域为I.如果存在实数如果存在实数M,满足:,满足:(1)对于任意对于任意xI,都有,都有f (x)M.讲授新课讲授新课第10页/共22页函数最小值概念:函数最小值概念:一般地,设函数一般地,设函数yf (x)的定义域为的定义域为I.如果存在实数如果存在实数M,满足:,满足:(1)对于任意对于任意xI,都有,都有f (x)M.(2)存在存在x0I,使得,使得f (x0)M.讲授新课讲授新课第11页/共22页函数最小值概念:函数最小值概念:一般地,设函数一般地,设函数yf (x)的定义域为
5、的定义域为I.如果存在实数如果存在实数M,满足:,满足:(1)对于任意对于任意xI,都有,都有f (x)M.(2)存在存在x0I,使得,使得f (x0)M.那么,称那么,称M是函数是函数yf (x)的的最小值最小值.讲授新课讲授新课第12页/共22页例例1 设设f (x)是定义在区间是定义在区间6, 11上的上的函数函数. 如果如果f (x)在区间在区间6, 2上递减,上递减,在区间在区间2, 11上递增,画出上递增,画出f (x)的一的一个大致的图象,从图象上可以发现个大致的图象,从图象上可以发现f(2)是函数是函数f (x)的一个的一个 .第13页/共22页求函数的最大值和最小值求函数的最
6、大值和最小值.例例2 已经知函数已经知函数y12 x(x2,6),第14页/共22页y求函数的最大值和最小值求函数的最大值和最小值.例例2 已知函数已知函数y12 x(x2,6),21246135xO第15页/共22页例例3 已知函数已知函数f(x),xaxx 22()当当a()若对任意若对任意x1,+),f (x)0恒成立,恒成立,试求实数试求实数a的取值范围的取值范围.x1,+).)(21的最小值的最小值时,求函数时,求函数xf第16页/共22页1. 最值的概念;最值的概念;课堂小结课堂小结第17页/共22页1. 最值的概念;最值的概念;课堂小结课堂小结2. 应用图象和单调性求最值的一般步骤应用图象和单调性求最值的一般步骤.第18页/共22页1. 阅读教材阅读教材P.30 -P.32;2课后作业课后作业习案习案:作业作业10第19页/共22页思考题:思考题:1.已知函数已知函数f (x)x22x3,若,若xt, t 2时,求函数时,求函数f(x)的最值的最值.第20页/共22页思考题:思考题:1.已知函数已知函数f (x)x22x3,若,若xt, t 2时,求函数时,求函数f(x)的最值的最值.2.已知函数已知函数f (x)对任意对任意x,yR,总有,总有f (x)f ( y)f (xy),且当,且当
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医疗器械行业采购工作总结
- 婚庆行业品牌推广案例
- 安防保安行业美工工作总结
- 金融行业员工培训
- 探索自我提升之路计划
- 财务会计前台工作总结
- 音乐录制委托合同三篇
- 神经内科护理工作感悟
- 2024年瓦斯抽放管理制度
- 2024年税务师题库及参考答案(完整版)
- 学术不端行为治理研究
- 企业文化、战略与电力能源知识参考题库练习卷含答案(一)
- 福建南平武夷高新技术产业控股集团有限公司招聘笔试冲刺题2024
- 2024年设备维修部管理制度(6篇)
- GB/T 45083-2024再生资源分拣中心建设和管理规范
- 精神科护理工作计划例文
- 2024山地买卖合同模板
- 河北省承德市2023-2024学年高一上学期期末物理试卷(含答案)
- 【初中化学】二氧化碳的实验室制取教学课件-2024-2025学年九年级化学人教版上册
- 出租车行业服务质量提升方案
- 景区安全管理教育培训
评论
0/150
提交评论