椭圆焦半径公式的证明和应用精品_第1页
椭圆焦半径公式的证明和应用精品_第2页
椭圆焦半径公式的证明和应用精品_第3页
椭圆焦半径公式的证明和应用精品_第4页
椭圆焦半径公式的证明和应用精品_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、-作者xxxx-日期xxxx椭圆焦半径公式的证明和应用精品【精品文档】椭圆焦半径公式的证明及巧用2008年08月31日 星期日 21:56命题:证明:说明:巧用焦半径公式能妙解许多问题,下面举例说明。一、用于求离心率例分析:所以,所以。二、用于求椭圆离心率的取值范围例分析:由得故,即,又。所以。三、用于求焦半径的取值范围例分析:所以。四、用于求两焦半径之积例分析:由知,所以的最小值为,最大值为。五、用于求三角形的面积例分析:。由余弦定理得。解得所以六、用于求点的坐标例分析:及得,解得所以。七、用于证明定值问题例分析:化简得所以为定值。八、用于求角的大小例分析:所以所以。九、用于求线段的比。例分

2、析:由两式相减并化简得。所以。所以。令,则,故所以,所以。如图 设的坐标为,椭圆与双曲线的离心率分别为,则,消去得,。不妨设,由成等差数列得,即。 易知易知 的最值不妨设为椭圆的左焦点,而,则。故。 设的坐标为,则 如图,连,则,由焦半径公式得,即。 若椭圆的焦点在轴上,则有。我们把椭圆上的点到两焦点的距离称为焦半径,而(或)、(或)称为焦半径公式。如图1,椭圆的准线方程为和。由椭圆的第二定义得,化简即得1如图为椭圆的两个焦点,以线段为直径的圆交椭圆于四点,顺次连结这四点和两个焦点,恰好围成一个正六边形,则离心率。2已知为椭圆的焦点,若椭圆上恒存在点,使,求离心率的取值范围。3若是椭圆上的点,为椭圆的焦点,求的取值范围。4若为椭圆的左、右焦点,为椭圆上任意一点,求的最值。5 若是椭圆上一点,为椭圆的左、右焦点,且,求的面积S。 。6 若为椭圆上的点,为椭圆的焦点,且,则的横坐标为_。 由, ,7已知为椭圆上两点,为椭圆的顶点,F为焦点,若成等差数列,求证:为定值。 ,8 如图3,设椭圆与双曲线有公共焦点,为其交点,求。9过椭圆的左焦点作与长轴不垂直的弦的垂直平分线交轴于,则。4,设的坐标

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论