正交实验设计原理_第1页
正交实验设计原理_第2页
正交实验设计原理_第3页
正交实验设计原理_第4页
正交实验设计原理_第5页
已阅读5页,还剩29页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精品文档正交试验设计 1概述任何生产部门,任何科学试验工作,为到达预期目的和效果都必需恰当地支配试验工作,力求通过次数不多的试验生疏所争辩课题的根本规律并取得满足的结果。例如为拟定一个正确而简便的分析方法,必定要争辩影响这种分析方法效果的种种条件,诸如试剂浓度和用量、溶液酸度、反响时间以及共存组分的干扰等等。同时,对于影响分析效果的每一种条件,还应通过试验选择合理的范围。在这里,我们把受到条件影响的反系方法的精确度、精密度以及方法的效果等叫做指标;把试验中要争辩的条件叫做因素;把每种条件在试验范围内的取值或选取的试验点叫做该条件的水平。这就是说我们经常遇到的问题可能包括多种因素,各种因素又有不

2、同的水平,每种因素可能对分析结果产生各自的影响,也可能彼此交织在一起而产生综合的效果。正交试验设计就是用于支配多因素试验并考察各因素影响大小的一种科学设计方法。它始于1942年,之后在各个领域里都得到很快的进展和广泛应用。这种科学设计方法是应用一套已规格化的表格正交表来支配试验工作,其优点是适合于多种因素的试验设计,便于同时考查多种因素各种水平对指标的影响通过较少的试验次数,选出最正确的试验条件,即选出各因素的某一水平组成比较适宜的条件,这样的条件就所考查的因素和水平而言,可视为最正确条件。另一方面,还可以挂念我们在错综简单的因素中抓住主要因素,并推断那些因素只起单独的作用,那些因素除自身的单

3、独作用外,它们之间还产生综合的效果。数理统计上的试验设计还能给出误差的估量。2. 试验设计的根本方法 全面试验法正交设计的方法,首先应依据试验的目的,确定影响试验结果的各种因素,选择这些影响因素的试验点,进而拟出试验方案,之后按所拟方案进行试验并对试验结果作出评估。必要时再拟出进一步的试验方案,使试验工作更趋完善,所得结果也更为牢靠。如在争辩某一显色反响时,为选择适宜的显色温度、酸度和显色完全的时间,可作如下的试验支配。首先确定上述三因素的试验范围:显色温度: 2535 温度以A表示酸浓度: L 酸浓度以B表示显色时间: 1030 min 时间以C表示其次确定每种因素在上述试验范围内各取的水平

4、数如各取三个水平。因素A的三个水平分别以A1,A2,A3表示;因素B的三个水平分别以B1,B2,B3表示;因素C的三个水平分别以C1,C2,C3表示;然后将显色试验的因素、水平列为下表。 因素水平A温度t/B酸浓度 C/molL-1C时间t/min125102302033530这是一个三因素三水平的试验问题,对这样的试验工作可做如下的支配。A1B1C1A2B1C1A3B1C1A1B1C2A2B1C2A3B1C2A1B1C3A2B1C3A3B1C3A1B2C1A2B2C1A3B2C1A1B2C2A2B2C2A3B2C2A1B2C3A2B2C3A3B2C3A1B3C1A2B3C1A3B3C1A1B

5、3C2A2B3C2A3B3C2A1B3C3A2B3C3A3B3C3即三因素水平的试验共27种组合33=27,按上组合方式做完27次试验后自然可得出在所确定的因素和水平下的最正确显色条件。这种全面试验的方法,对事物的内部规律剖析得格外清楚,但却费时费事。假设我们还需要对试验精密度,对试验误差的大小做出估量,那么每一试验至少应重复一次。即应做54次试验。假设在争辩六因素而每种因素均取5个水平常,那么全面试验的数目是56= 15625次,这里还未包括为了给出误差估量所需的重复试验次数,明显这是难以付诸实施的。当考察的因素,水平数越多,在试验中全部可能的搭配也更多,要逐个地进行试验,明显是不行能的。这

6、就提出了合理地设计和支配试验的问题。提出了通过较少量的试验次数以获得抱负的试验条件取得最正确的试验效果,并对试验结果做出科学评估的问题。对于上述试验,一种习惯的试验方法是简洁比较法。 简洁比较法这种方法首先固定因素A、B为某一水平如A1、B1,转变C以获得在A1、B1时C的最正确水平设为C2,在其下以“-。 C1 A1B1 C2 C3然后固定A为A1,C为C2,转变B 以获得在A1、C2时B的最正确水平设为B3 B1A1C2 B2 B3再固定B为B3,C为C2,转变A以获得在B3、C2时的最正确水平设为A2。 A1B3C2 A2 A3这样可以认为A2B3C2为较佳的显色条件,即简洁比较法经过9

7、次试验也能获得较佳的试验条件,但却存在以下缺点: 当各因素之间交互影响较大时,A2B3C2不认为是最正确试验条件。 它未能保证三因素中任何两因素的不同水平之间相碰一次因而上不均衡的,它供给的信息也是不丰富的。 在不做重复试验的状况下,不能给出误差的估量。如何保持这种方法试验次数少的优点而又能避开上述缺点呢,可接受正交设计的方法来解决。在这9次试验中实际上有两次试验是在相同条件下的重复试验A1B3C2 和A1B3C2,所以只有7次属不同条件下的试验,另一方面还可看出各因素、各水平消灭的时机是不均衡的,其中A1、C2各消灭了7次;B3、C1各消灭了4次;而A2、A3、C1、C3、B2却只消灭了一次

8、,明显,它们的消灭的时机是很不均衡的。简洁比较法认为最正确的分析条件是A2B3C2,但在试验过程中C2是在A1B1条件下与C1和C3相比,是最正确的一个条件水平,至于因素A、B取其他水平常是否也得出同样的结论,却未做过试验,也不能得出同样的结论,故上述的条件不能视为最正确的显色条件,而只能是最正确条件的一种估量。导致上述几种问题的缘由是简洁比较法中各因素各水平的搭配不是均衡分散的,只能在同一批试验中做单因素比较,而在不同批数的试验之间却无法进行比较。23 正交设计法试验设计是数理统计中的一个重要内容,正交设计是利用预先编制好的正交表来合理的支配多因素试验,以便通过少量的试验次数来获得满足的结果

9、,同时对试验数据进行统计分析。现在对三因素三水平的试验做如下的支配,首先只考虑A、B两因素,起全面试验应作9次,如下表所示。 B AB1B2B3A1A2A3A1B1A2B1A3B1A1B2A2B2A3B2A1B3A2B3A3B3这时两因素的三水平相互各碰一次,它反映的状况全面,现在将因素C考虑进去,也同样期望在任何两个因素的不同水平之间各相碰一次而有不增加试验的次数,可做如下按排.。C BA B1B2B3A1A2A3A1B1C1A2B1C2A3B1C3A1B2C2A2B2C3A3B2C1A1B3C3A2B3C1A3B3C2按上表支配的9次试验与简洁比较法相比,试验次数相同但却克服了简洁比较法的

10、不均衡性,A的每个水平和B、C的三个水平分别各碰一次,B的每个水平和A、C的三个水平分别各碰一次,对C也是类似的状况。即三因素中任何两因素的不同水平均相碰一次因而试验是均衡的,上述9次试验可视为三因素三水平的全面试验的代表。为了书写便利,上述试验设计可简化为下表: C B A 123123123231312表中右下角局部的每一行和每一列中,1,2,3正好各消灭一次,我们把具有这样的性质方块叫拉丁方,在排这种方块时常用拉丁字母,故有拉丁方之称。3正交设计法的根本特征31 均衡分散性在正交设计的试验支配中,各因素之间的搭配是均匀的,这种因素间搭配的均匀性试验点分布的均衡性成为正交设计的均衡分散性。

11、或者说,正交试验设计把各试验条件均衡地分散在排列完全的水平组合之中,是之更具有代表性,更易于通过最少的试验次数来寻求最正确的试验条件,正交设计的这种性质,可以从试验结果的平均值中消退由于非均衡所引起的误差,有利于提高测定结果的牢靠信。 整齐可比性正交试验设计中,各因素各水平之间不仅搭配均匀,而且变化很有规律。在考虑某因素的每一水平的试验中,其他各因素各水平消灭的次数都相同,所作的奉献也认为是全都的。这样在比较各因素的每一水平对指标生产的影响时,就能最大限度地排解其他因素的干扰,突出本因素的作用,也就将各因素的效应清楚地加以区分并估量其大小,这就是正交试验设计的整齐可比性。在数学上把均衡分散性和

12、整齐可比性称为正交性,凡具有这特性的试验设计方法都称为正交设计法。正是由于正交试验设计最大限度地排解了其他因素的干扰并消退了非均匀分散性可能造成的误差,因而只要比较因素各水平的试验指标的平均植,就能估量各因素对试验指标的影响大小,这在后面将作具体的介绍。两拉丁方的叠合在上述三因素三水平的根底上,假设还需同时考虑第四个因素D,且因素D也取三个水平D1,D2,D3,那么能否在不增加试验次数而又能保持前述的要求呢?这首先应将D的三个水平拼成拉丁方,其次D的拉丁方和C的拉丁方不一样。对于前着,是使D也能与A、B均衡搭配;对于后者,是使D与C之间也能均衡,既无重复,又无遗漏。假设用1,2,3表示D的三个

13、水平,而D的拉丁方与C的拉丁方相同时,其9次试验支配为:C(D) BA12311(1)2(2)3(3)22(2)3(3)1(1)33(3)1(1)2(2)这时A、B和D间是均衡的搭配,但C和D的搭配却不均衡,C的1水平和D的1水平相碰三次而不与D的2、3水平相碰,C的其他水平也有类似的状况。所以上述的试验支配是不妥的,当试验的结果说明C的1水平最好,而在C取1水平常总是伴随着D的1水平的消灭,自然也可以认为是D的1水平也最好,导致C和D的作用混杂。改进上述试验设计时,只需使D的拉丁方和C的拉丁方不同,两拉丁方具有均匀的搭配。按此原那么可作如下的设计:C、D BA1231112233223311

14、23321321这时D的三个水平组成的是拉丁方,它和A、B及C之间的搭配都是均衡的,D的每一水平和C的1、2、3水平各碰一次,C的每一水平也和D的1、2、3水平各碰一次,既无重复,也无遗漏。现将C、D两个拉丁方叠合在一起,就获得上述的试验设计,习惯上把具有这种性质的两个拉丁方叫正交拉丁方。12(1) (2) (3)3(1) (2) (2) (3) (1)32313121(1)2(2)3(3)2(3)3(1)1(2)3(2)1(3)2(1)正交拉方设计因其搭配均衡,在分析试验数据时可以把每个因素的作用剖析得格外清楚而不致混杂,同时还可简便地寻求到最优的测量条件,到达预期的效果。第一局部正交试验结

15、果的直观分析1.正交表及其使用正交表它是一种预先编制好的表格,依据这种表可合理支配试验并对试验数据作出推断。对于前述的三因素三水平试验的设计支配,可接受L934正交表来完成。L934表见表1.表1 L934正交表水平 因素(列号)试验号1234111112122231333421235223162312731328321393321表L934读作L934,符号L表示正交表,L右下角的数字“9表示此表有9行,即需支配9个试验,括号内数字的指数“4表示有4列,即最多能支配四个因素;括号内数字的底数“3表示每个因素取三个水平。表头的列号是置放试验中的因素因素常记为A、B、C、D,表中列号1、2、3、

16、4是在不考虑交互作用时最多可置放四个因素因素少于四时,可只用其中几列,表的左侧为试验号,表内的1、2、3是因素在试验中应分别取的水平,故称作水平号。L934正交表可解决四因素或少于四因素的三水平试验设计问题,是一种较为简洁的正交表。当试验因素及所取水平数更多时,那么应选择其它种类的正交表,如L1645、L27313、L2556、L164229等,其中L1642 29表示作16个试验,可安两个四水平的因素和9个二水平的因素。正交表的选择选择正交表时可考虑以下几点: 依据试验目确实定要考查的因素,如对试验的变化规律有大致的了解,有把握推断出影响试验效果的主要因素,可少取些因素,也可多取些因素,总之

17、不能将主要影响因素漏掉。 确定各因素的变化范围和水平数,每个因素的水平数可以相等,也可以不等,一般地说,重要因素或者特殊期望具体考查的因素,其变化范围可宽些水平数可多些,其余的因素所取水平数那么可少些。 依据试验者进行试验时一次能平行完成的试验次数而选择正交表。( )选用正交表除考虑因素水平及试验条件外,还应考虑对试验结果精度的要求。当对试验结果的精度要求高时,宜取试验次数多的正交表,试验费用贵或试验周期长的,可取试验次数少的正交表。当存在交互作用时,应选用具交互作用的正交表。一般状况下,假设因素全为二水平常,可选用L423、L827、L16215等正交表;因素全是三水平常,可选用L934、L

18、18237、L27318等正交表;假设因素全为四水平的,可选用L1645正交表;因素全为五水平的那么选用L1645正交表。当因素取不同水平常,一方面可接受下面即将介绍的拟水平法,一方面可直接套用L84*28、L12328、L164212、L184229等混合水平正交表。在三水平试验种选L18237,其中2水平所在的列,不做支配。三水平因素可在其它7列选用。正交试验的工作程序及几点说明在选择所需要的正交表后,将已确定的因素放置在表的任意列上,并把每一列的1、2、3填入具体水平,即得出试验方案。今仍以前述三因素三水平的显色反响为例,其试验方案如下表所示。表:三因素三水平正交试验表水平 因素试验号1

19、At/oC2Bmol/L3C(t/min)试验结果112511102125222031253330423012205230233062303110733513308335211093353220表中每一横行表示一次试验及进行该试验时所取的条件,按上支配作完试验后并将所测结果填入最终一列内,至于试验结果的分析,将在以后再作争辩。上面的试验设计表未考虑因素之间的交互作用,应选用L934正交表,三因素在表上所处的列可任意选择而且可将因素的次序进行交换。如在1、2、3列可依次排列A、B、C三因素,也可支配为A、C、B三因素,在把因素及水平排入正交表后而获得一张试验设计表,这过程叫表头设计。L934表所

20、支配的9次试验,不肯定按表上的试验号码排列,也可按抽签的方法来打算,这样处理是为了削减试验中由于先后把握不匀所带来的影响,但对有些试验,其次序却不宜任凭变更。对于每个因素的水平并不肯定总是由小到大或由大到小按挨次排列,一般接受随机化方法来处理,即对局部因素的水平作随机的排列。常用的正交表三因素二水平正交表正交表为L423,表头设计为: 列号试验号1231111212232124221七因素二水平正交表正交表为L827,表头设计为: 列号试验号12345671111111121112222312211224122221152121212621221217221122182212112更多因素二水

21、平的正交法正交表为L12211、L16215,前者的表头设计为: 列号试验号12345678910111111111111112111112222223112221112224121221221125122122121216122212212117212211221218212122211129211222122111022211112212112212121112222112121221四因素三水平正交表正交表为L934,表头设计在前已述及,当为三因素时,此三因素可在表头上占取任意三列,如三因素三水平在选用L934时,表头设计可为:列号试验号1231111212231334213522162

22、32731283239331七因素三水平正交表正交表为L1837,表头设计为: 列号试验号12345671111111111212222221313333331421122331522233111623311221731213231832321311933132122101133221211121133221213221132132123132214223121321523123212163132312217321312321833212312*:假设把二水平的列1排进L1837表中,便得到混合型L182137表。更多因素的三水平正交表可选用L27313、L36313正交表。五因素四水平正交表

23、正交表为L1645,表头设计为: 列号试验号123451111112122223133334144445212346221437234128243219313421032431113312412342131341423144231415432411644132更多因素的四水平,可选用L3249正交表。六因素五水平正交表正交表为L2556,表头设计为:列号试验号12345611111112122222313333341444445155555621234572234518234512924512310251234113135241232413513335241143413521535241316

24、4142531742531418431425194425312045314221515432225215432353215424543215255543212.二列间交互作用正交表 二列间指两因素之间因为因素占列交互作用正交表除能对因素的主效应进行考查外,有时还能简便地考查各因素之间的交互作用并给出交互效应的大小。所谓交互作用,是指在某些试验中,不仅因素自身对试验结果产生影响,而且因素之间产生协同的影响,这种协同作用叫交互作用。如考查氮肥(N)和磷肥(P)对豆类增产效果,可在四块土质状况根本相同的土地上做四个试验,试验中施肥状况及产量如表所示.表: 氮肥.磷肥对豆类产量的影响试验号N量m/kg

25、P量m/kg产量m/kg100200230215302225432275由表知,单施氮肥3kg增产豆类15kg;单施磷肥2kg增产豆类25kg;同时施加了3kg氮肥和2kg磷,豆类增产量不是把两种肥料单独使用时增产豆类量的加和,而是增产了75kg,说明两种肥料对豆类增产起了协同的效果,这种作用叫氮肥和磷肥的交互作用,以NXP表示。对于其它的因素,那么记作因素1X因素2,或AB、AC等。 二列间交互作用正交表试验设计时,要考虑各因素间有无交互作用,这既可从专业本身加以推断,也可对肯定的试验方案下的试验数据经统计分析来加以确定。在常用正交表中,有的只能考查因素本身的效应,不能用以考查因素间的交互作

26、用;有的那么可以分析因素间的交互作用,很多正交表都附有相应的二列间的交互作用表。在作表头设计时,假设不考虑因素间的交互作用,那么因素置那一列上可任意选取,假设因素间存在交互作用,那么因素的置放要依据肯定的规章,应利用有交互作用的表来设计表头。今以L827正交表来支配具有二列间交互作用的试验工作时,可由表2对因素及交互列在表头中所处的列号作出支配。表2:L827二列间交互作用表列号列号1A2(B)3(A*B)4(C)5(A*C)6(B*C)71(A)(1)3254762(B)(2)167453(A*B)(3)76544(C)(4)1235(A*C)(5)326(B*C)(6)17(7)表2中最上

27、一行和最左侧一列数字以及括号呈对角线内的数字是列号,其余数字均为交互作用的列号。对于三因素而言,先将因素置放在表的第1、2列,那么A和B相交的位置上的数字为3。即A*B应置放在第3列上,再将因素c置放于第4列,那么A和C相交位置上的数字是5,B和C相交位置上的数字是6,这样A和C及B和C的交互作用列应分别为第5列和第6列。假设考查时还有第四个因素D,并将它置放于第6列,依据上表可得如下的表头设计。列号1234567因素ABC*DA*BCB*DA*CDB*CA*D这样的设计中,虽有B和CD、C与BD、D与BC的混杂,但假设B、C、D之间的交互作用很小。故不致影响试验结果的分析,仍可进引因素A、B

28、、C及交互作用AB、AC及AD的考查。假设要对四个因素及其两两之间的交互作用都作全面的考查,不允许上述存在的几种混杂,故此时不能选用L827表,而选用L16215二列向的交互作用表,见表3。表3: L16215二列向的交互作用表列列号 号1234567891011121314151(1)325476981110131215142(2)16745101189141512133(3)7654111098151413124(4)123121314158910115(5)32131215149811106(6)1141512131011897(7)151413121110988(8)12345679(

29、9)32547610(10)1674511(11)765412(12)12313(13)3214(14)115(15)这样,对于四因素的表头设计为:列号123456789101112131415因素ABABCACBCDADBDCD表3中,D未置入第7列。缘由是D置于7列后,AD应置第6列,导致与BC的混杂。对于五因素。二水平的试验,在同时考虑各因素之间的交互作用时,因五因素自身及它们之间的两两交互作用共有15项,仍可用L16215二列间交互作用表,其表头设计为:列号12345678因素ABA*BCA*CB*CD*ED列号9101112131415因素A*DB*DC*EC*DB*EA*EE假设考

30、查一个四因素三水平的问题,在只考虑因素主效应时,选用L827正交表,让因素挨次上列,水平对号入座,填写好试验方案并按此支配进行试验。假设同时考虑交互作用的影响,仍以选用 L827二列向交互作用表为宜,在填写试验方案时,只需列出交互作用列仅不填水平取值,仍按L827表的支配作完八个试验,并将测得值填入表中,既可考察四因素各自的主效应,同时也能考察它们两两的交互作用效应。例如如下:今考查影响某化合物产量的四个主要因素,每个因素取两个水平,其值为:因素水平A t/cB t/hC 反料配比D 搅拌速度1A1 80B1 2C1 1/1D1 慢2A2 100B2 3C2 1D2 快在不考虑因素间的交互作用

31、时,试验按下表支配进行:因素试验号ABCD1111121122312124122152112621217221182222当同时考虑交互作用的影响,但又依据已有的阅历估量这些交互作用并不明显时,仍选用L827二列间的交互作用表,其表头设计为:列号1234567因素ABABCDCACBDBCADD在此状况下,每个因素的作用可以分析清楚,而交互作用都混杂在一起,只是由于交互作用很小,不必单独颁出来,这样的处理对结果不致产生明显的影响。假设不需对各因素的交互作用作全面的考查而只争辩其中影响较大的几个交互作用,如AB、AC、AD那么表头设计为:列号1234567因素ABCDABCBDACDBCAD设计

32、中虽有一些混杂,但因CD、BD、BC却很小,不致影响结果分析。假设需全面考查四因素及其两两的交互作用。那么选用L16215二列交互作用表,其表头设计为:列号123456789101112131415因素ABABCACBCDADBDCD依据已有的阅历,因素A、B、C之间交互作用,而搅拌速度D与这些因素间的交互作用可予无视,这样就成为争辩四个因素和三个交互作用中,何者对产量影响较大、何者影响较小并进而寻求有利于提高化合物产量的条件选择问题。这时应选择至少有七列的二水平正交表L827,其表头设计为:列号1234567因素ABABCACBCD表头设计好后,再按正交试验的根本方法,列出如下试验方案。 列

33、号试验号因素A t/cB t/cABC 配比ACBCD123456711(80)1(2)11(1/1)111(慢)21(80)1(2)121)222快31(80)2(3)21(1/1)122快41(80)2(3)221)211(慢)52(100)1(2)21(1/1)212快62(100)1(2)221)121(慢)72(100)2(3)11(1/1)221(慢)82(100)2(3)121)112快综上所述,可知正交表是支配多因素试验的一种有用的工具,在应用时不得将主要影响因素遗漏,必要时倾向于多考查一些因素,因为有时增加12个考查的因素不肯定会增加试验次数或者说增加工作量并不大。在接受三水

34、平以上的正交表作试验后,可依据试验结果作图,找出不同水平的变化趋势,为以后的试验供给有益的信息。所以在不遗漏合理值的前提下,可把各因素的取值范围稍取宽些,在此范围内取的水平数也不宜多,以免选用试验次数多的正交表而增加试验工作量。假设先用水平数少的正交表作试验,以从多个因素中选择出主要因素后,再于下一批试验中对已选择出的主要因素进行的细致考查。在一般化学分析中,三因素之间的交互作用通常可以无视,不必单独再作考查,让其混杂在试验误差之中。因交互作用不是具体因素,也就不存在水平问题,无须特地增加试验工作来推断它的影响。3正交试验结果的直观分析正交试验结果的直观分析由选定的正交表支配试验并按试验方案完

35、成试验记录各次试验的结果,再按肯定步骤分析试验结果。试验结果分析方法有两种,一种是直观分析法;一种为方差分析法。直观分析法是一种常用的结果分析法,它简便直观,计算工作量小,但不能给出试验误差的估量,也就无法得知分析结果的精度。不考虑交互作用的单指标正交试验的结果分析对于只考虑因素的主效应而无视因素间的交互作用时,正交试验结果的分析,可从下面几个例子说明:例1:争辩某萃取分别过程的萃取效率,选择了如下的因素和水平萃取温度A: 15A1、25A2萃取时间B: 3min (B1).、 5min(B2)两相体积比C: 1/1(C1) 、2/1(C2)盐析剂用量(D): 1g/25ml(D1) 、2g/

36、25ml(D2)试推断在不考虑交互作用的状况下各因素的影响并寻求最正确的萃取条件。解:此题属四因素二水平问题,可选用L827正交表,在表头设计中将因素A、B、C、D分置于1、2、4、7列,并将因素的各水平代入,按正交表支配做完八次试验,所得结果记录于表的末列。 因素 列号试验号 A B C D试验结果yi% 1 2 4 7 1 2 3 4 5 6 7 815 3 1 115 3 2/1 215 5 1 215 5 2/1 125 3 1 2 25 3 2/1 125 5 1 125 5 2/1 28695919491968388假设从八次试验结果的萃取效率yi来看,可认为A2B1C2D1为最正

37、确条件。实际上,为获得正确的结论,应对所测数据作科学的分析。首先将测得数据进行综合比较,找出对yi有明显影响的因素,进而推断它取什么水平对试验产生最正确的效果。为便于综合比较,可先从每个因素的不同水平的比较着手,在八次试验中,由于每一次试验都是在不同条件下进行的,故无比较的根底,只有将所测八个数据适当地加以组合,才能找到某种可比性正交设计的综合可比性。以因素A为例,A的1水平消灭在表的试验号1-4号,这四次试验的萃取效率的平均值为=A的2水平 消灭在表的试验号5-8号,四次试验的萃取效率的平均值为 由于在 条件下的四次试验中,因素B、C、D皆取遍了两种水平,且两种水平消灭的次数相同,均为二次。

38、同样在 条件下的四次试验中,B、C、D也都取遍两种水平,且均为二次。这样对于和条件下的四次试验来说,虽然其它条件B、C、D在变化,但这种变化是公平的或均衡的,即与之间的差异反映了两个水平的不同影响,所以 与就是有可比性了-=可以认为因素A 取 水平常优于取 水平,依据同样的理由比较因素B、C、D的两种水平的效果,可得如下各式: 以上各项计算的结果可列在正交表的下方。 因素 列号 试验号 A B C D 1 2 3 4 5 6 7试验结果 (%) 1 2 3 4 5 6 7 8 1 1 1 1 1 1 2 2 1 2 1 2 1 2 2 1 2 1 1 2 2 1 2 1 2 2 1 1 2 2

39、 2 28695919491968388 366 368 351 359 358 356 373 365 表中 表示正交表中每列的1水平所对应的数据之和,为其平均值;表示正交表中每列的2水平对应的数据之和,为其平均值,R叫极差,是每列两水平平均值之差。 由差值的正负知因素A取比好;因素B取比好;因素C取比好;因素D取比好,所以在不考虑交互作用的状况下,选择进行萃取是最为适宜的。另一方面A、B、C、D四因素各自对萃取效率的影响是不同的,这种影响的大小具体表现在该因素的不同水平对应的平均萃取效率之间的差异大小。从表上的极差植R确定值知,因素C的两个水平所导致的萃取效率的差异最大,即C的影响是最大的

40、,其次是因素B、A,影响最小的是因素D。当然,在试验范围转变后,上述结论也可能发生变化。例:为提高某产物的产率,考查可温度、反响时间、压力和溶液浓度四个因素的影响,每个因素取三个水平,取值如下其中因素A的三个水平作了随机处理: 因素水平温度时间压力浓度123 140 120 130 解:试验是四因素三水平问题,可选用、等正交表,假设由于试验条件的限制,那么选用试验次数少的表,将因素挨次上列,水平对号填入並按正交表的支配作完九次试验,结果记录于表的右侧,而对结果所作的初步运算记录于表的下面局部。 列号 因素 试验号 1 2 3 4产率% A B C D 123456789 1 1 1 1 1 2 2 2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论