自动寻迹小车系统课件_第1页
自动寻迹小车系统课件_第2页
自动寻迹小车系统课件_第3页
自动寻迹小车系统课件_第4页
自动寻迹小车系统课件_第5页
已阅读5页,还剩33页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、兰州交通大学毕业设计(论文)摘 要本设计是一种基于单片机控制的简易自动寻迹小车系统,其研究意义涵盖了工业、生活、勘探以及人类关注的探月工程。设计旨在设计出一款可以自主按照人类预设的轨迹行走(或者完全自主行走)并完成指定任务的小车。从设计的功能要求出发,设计包括小车机械构成设计和控制系统的软硬件设计。为了适应复杂的地形我采用稳定性比较高的四轮构架式,用后轮驱动前轮换向的控制模式。控制系统以STC89C52为控制核心,用单片机产生PWM波,控制小车速度。利用红外光电传感器对路面黑色轨迹进行检测,并确定小车当前的位置状态,再将路面检测信号反馈给单片机。单片机对采集到的信号予以分析判断,及时控制驱动电

2、机以调整小车转向,从而使小车能够沿着黑色轨迹自动行驶,实现小车自动寻迹的目的。关键词:循迹小车;单片机;红外传感器IAbstractThe design is a simple microcontroller-based control automatically tracing the car system, and its significance covers the industry, life, exploration, and human concern lunar exploration. The design aims to design a can of independen

3、t walking in accordance with the trajectory of human default (or completely autonomous walking) and to complete the tasks assigned to the car. The design includes the functional requirements from the design of car mechanical design and control system hardware and software design. Relatively high sta

4、bility of the four trusses in order to adapt to the complex terrain, before the rotation of the rear-wheel drive control mode.Control system to control the core to STC89C52 microcontroller PWM wave to control the car speed. Using infrared photoelectric sensor to detect the black track on the road an

5、d to determine the current status of the car, and then the road detection signal is fed to the microcontroller. Microcontroller to be collected signal analysis and judgment, and timely control of the drive motor to adjust the steering of the car, so that the car is traveling along the black track to

6、 achieve the purpose of the car automatically tracing.Keywords::car tracking,microcontroller,Infrared sensors兰州交通大学毕业设计(论文)目 录摘 要IAbstractII目 录III1 绪论11.1 研究背景11.2 研究目的和意义11.3自动循迹小车的国内外研究现状31.4 研究内容32 自动循迹小车系统方案设计与论证42.1 自动循迹小车基本原理42.2 总体方案设计42.3 主控系统42.4 电机驱动模块52.5 驱动电机选择62.6 循迹模块62.7 机械系统72.7.1 电源

7、模块72.7.2 电池的安装72.7.3 驱动部分83 主要器件介绍93.1 STC89C52的介绍93.2 L298N的介绍123.2.1 L298的引脚功能123.2.2 L298的运行参数133.2.3 L298的逻辑控制143.3 TCRT5000的介绍143.4 LM324的介绍154 硬件设计174.1总体设计174.2 STC89C52单片机控制电路184.2.1 时钟电路194.2.2 复位电路204.2.3 EA/VPP(31脚)的功能和接法204.2.4 P0口外接上拉电阻204.3 TCRT5000黑色轨迹识别电路214.4 LM324电压比较电路224.5电机驱动电路2

8、34.5.1驱动电路234.5.2 PWM调速原理245 程序设计265.1 主程序265.2 TCRT5000扫描程序285.3 PWM编码产生程序29结束语31致 谢32参考文献33I1 绪论1.1 研究背景随着电子技术、计算机技术、智能控制技术的飞速发展,产品的智能化和小型化越来越成为人们关注的热点。各种智能小车在智能化玩具中占了很大的比例。近年来,传统玩具的市场逐步缩水,高科技智能化的电子类玩具则逐步成为市场的主流。因此,可遥控的智能化小车的研究是非常有意义的,具有很大潜在市场价值的。世界上许多国家都在积极进行智能车辆的研究和开发设计。移动机器人是机器人学中的一个重要分支,出现于20世

9、纪06年代。当时斯坦福研究院(SRI)的NilsNilssen和charlesRosen等人,在1966年至1972年中研制出了取名shakey的自主式移动机器人,目的是将人工智能技术应用在复杂环境下,完成机器人系统的自主推理、规划和控制。从此,移动机器人从无到有,数量不断增多,智能车辆作为移动机器人的一个重要分支也得到越来越多的关注。智能小车,也被称之为轮式机器人。我们知道,机器人技术的发展是一个国家高科技水平和工业自动化程度的重要标志和体现。机器人由于具有高度的灵活性、可以帮助人们提高生产率、改进产品质量和改善劳动条件等优点,在世界各地的生产生活领域得到了广泛的应用。智能小车正是模仿机器人

10、的一种尝试。它是一种以汽车电子为背景,涵盖控制,模式识别,电子、电气、单片机、机械等多学科的科技创新性设计,一般主要由路径识别、速度采集、角度控制以及车速控制等模块组成。这种智能小车能够自动搜寻前进路线,还能爬坡;感知前方的障碍物,并自动寻找前进方向,避开障碍物;加入相关声光讯号后,更能体现出智能化和人性化的一面。1.2 研究目的和意义智能小车,是一个集环境感知、规划决策,自动行驶等功能于一体的综合系统,它集中地运用了计算机、传感、信息、通信、导航及白动控制等技术,是典型的高新技术综合体。在工业生产中,可以代替人类完成恶劣环境下的货物搬运、设备检测等任务;在军事上,可以在危险地带代替人类完成侦

11、查、排雷等任务;在民用上,可以作为导盲车为盲人提供帮助;在科学研究方面,可以代替人类完成外星球勘探或者矿藏勘探等。因此对智能小车的研究具有非常大的意义。随着人们物质文化生活水平的不断提高,智能化的电子玩具深受人们的喜爱,尤其是各种智能小车,由于这类玩具具有较好的交互性,可控性,能够给人们带来很好的娱乐以及参与其中的体验,高科技智能化的电子类玩具逐渐成为市场的主流。与此同时,智能小车可以应用于考古、机器人、医疗器械等许多方面,尤其在足球机器人研究方面具有很好的发展前景。因此,智能化小车的研究不仅具有很大的现实意义,还具有极为广阔的应用前景和市场价值。例如智能运输系统。公共交通是城市发展的必然产物

12、,也是城市赖以生存的重要基础设施之一。它作为城市动态大系统中一个重要组成部分,是城市整体发展中不可缺少的物质条件和基础产业,也是联系社会生产、流通和人民生活的纽带。公交系统具有运载量大、运送效率高、能源消耗低、相对污染少、运输成本低等项优点。随着我国改革开放的深入和经济建设的持续快速发展,城市规模不断扩大,交通需求也不断增加。有关资料表明,1996年全国城市机动车保有量为884.5万辆,比1977年增长近9倍,年均增长33.8%,全国城市自行车超过1.8亿辆,占全国总量的40%,城镇每百户拥有率达198辆。道路建设虽突飞猛进,从1980年至1994年,全国城市道路总长从2.95万公里增至11.

13、1万公里,年平均增长率为9.9%,人均道路面积从2.8m2增至6.6m2,道路面积增长率为年均11.6%,这样的速度仍然赶不上车辆的增长速度。同时,由于多种原因致使公交车辆运营速度由每小时12-14公里下降至5-10公里,新增的运力被运输效率下降抵消,公交承担运量不断减退,居民出行方式逐年由公交向自行车等个体交通方式转移,这无疑加剧了交通的拥挤程度。如何解决城市居民出行交通需求的不断增加与公共交通发展相对滞后的矛盾成为摆在我们面前的一项迫切任务。智能运输系统(Intelligent Transportation Systems,ITS)。它是在关键基础理论模型研究的前提下,把先进的信息技术、数

14、据通信技术、电子控制技术及计算机处理技术等有效地综合运用于地面交通管理体系,从而建立起一种大范围、全方位发挥作用、实时、准确、高效的交通运输管理系统。它利用无线通讯专网低频段以低成本实现了公交企业运营数据的实时采集、快速传输,自行开发研制了无线通讯系统车载智能终端设备及控制系统,使公交企业能够充分利用无线通讯系统采集和传输的车辆运营数据进行车辆调度和车辆运营管理,且具有数据和话音双重传输功能。具有用户容量大、网络范围覆盖广、调度信息响应速度快、全自动语音报站自动化、信息发布广泛、出行者信息服务智能化、设备自动维护智能化的特点。智能公交系统的提出,必将大大改善公交管理水平,提高公交系统经济效益,

15、减少政府财政补贴。由于采用公交出行的居民增加,相对减少了其它车辆出行,这势必会缓解城市交通压力,减少环境污染,降低交通事故发生率,改善交通环境,带来巨大的社会效益。1.3自动循迹小车的国内外研究现状国外智能小车始于上世纪50年代,它的发展历程大致可以分为以下三个阶段:第一阶段:1954年美国BarrettElectronic公司研究开发出了世界上第一台自主引导车系统,该系统只是一个运行在固定路线上的拖车式运货平台,但它却具有了智能车辆最基本的特征无人驾驶。第二阶段:从80年代中后期,在欧洲,普罗米修斯项目于1986年开始了在这个领域的探索,在美洲,美国于1995年成立了国家自动高速公路系统联盟

16、,其目标之一就是研究发展智能车辆的可行性,并促进智能车辆技术进入实用化,在亚洲,日本于1996年成立了高速公路先进巡航/辅助驾驶演剧协会,主要目的是研制自动车辆导航的方法,促进日本智能车辆的整体进步。进入80年代中期,设计和制造智能车辆的浪潮席卷了全世界,一大批世界著名的公司开始研制智能车辆平台。第三阶段:从90年代开始,智能车辆进入了深入、系统、大规模的研究阶段。最为突出的是,美国卡内基-梅陇大学机器人研究所完成了Navlab系列的自主车的研究,取得了显著的成就。相比于国外,我国开展智能车辆技术方面的研究开始于20世纪80年代,而且大多数研究尚处于针对某个单项技术研究的阶段。虽然我国在智能车

17、辆技术方面的研究总体上落后于发达国家,但是我国也取得了一系列的成果,主要有:中国第一汽车集团公司和国防科技大学于2003年研制成功了我国第一辆自主驾驶轿车;上海交通大学应用现代控制理论设计出了一种自动驾驶汽车模型,该模型在汽车系统的动力学建模的基础之上,设计了自动驾驶的专项系统,它能根据弯道的弯曲变化程度实时的计算出车辆的转向盘角度,控制车辆按照预设道路行驶;清华大学计算机系智能技术与系统国家重点实验室自1988年开始研制的THMR系列移动机器人取得了很大的成功。它兼有面向高速公路和一般道路的功能,目前已经能够在校园的非结构化道路环境下,进行道路跟踪和避障自主行驶;哈尔滨工业大学于1996年研

18、制成功的导游机器人等。1.4 研究内容本设计的智能电动小车具有自动寻迹功能,可用过PWM编码控制行驶速度。整体设计可以分为如下几个模块,控制核心采用MCS-51系列中的STC89C52单片机,循迹是通过传感器实现的,利用红外对射管检测路面的轨迹,时刻调整车体位置使车不离开轨道。整个系统具有自动寻迹的功能。电机驱动采用常用的PWM方式进行电机的降压调速控制。软件中主要用到工业中常用的PID控制算法。整个系统的电路结构较简单,可靠性能高。实验测试结果满足要求。2 自动循迹小车系统方案设计与论证2.1 自动循迹小车基本原理循迹就是能够沿着给定的轨迹运行,一般给定的轨迹为在白色地面上黑色轨迹。为了实现

19、这一目的,就需要轨迹检测模块,这相当于小车的眼睛,需要将路面信息返回到大脑中,这大脑就需要有信息处理功能的微处理器来构成,处理的信息需要执行机构来执行,这就需要电机驱动模块,来实现小车的行走功能,而一个完整的系统,还需要有电源模块来提供能量。简言之,系统的基本原理就是:循迹模块将检测到的路面信息传送给微处理器来处理,然后将处理结果送到电机驱动模块执行,达到循迹的目的。2.2 总体方案设计根据题目的要求,确定如下方案:在现有玩具电动车的基础上,加装反射式红外光电传感器,实现对电动车的位置、运行状况的实时测量,并将测量数据传送至单片机进行处理,然后由单片机根据所检测的各种数据实现对电动车的智能控制

20、。本方案能实现对电动车的运动状态进行实时控制,控制灵活、可靠、精度高,可满足对系统的各项要求。系统整体方框图如图2.1所示。单片机STC89C52循迹检测模块电机驱动 模块 图2.1 系统总体设计框图2.3 主控系统根据设计要求,我认为此设计属于多输入量的复杂程序控制问题。据此,拟定了以下两种方案并进行了综合的比较论证,具体如下:方案一:选用一片CPLD(如EPM7128LC84-15)作为系统的核心部件,实现控制与处理的功能。CPLD具有速度快、编程容易、资源丰富、开发周期短等优点,可利用VHDL语言进行编写开发。但CPLD在控制上较单片机有较大的劣势。同时,CPLD的处理速度非常快,而小车

21、的行进速度不可能太高,那么对系统处理信息的要求也就不会太高,在这一点上,MCU就已经可以胜任了。若采用该方案,必将在控制上遇到许许多多不必要增加的难题。为此,我们不采用该种方案,进而提出了第二种设想。方案二:采用单片机作为整个系统的核心,用其控制行进中的小车,以实现其既定的性能指标。充分分析我们的系统,其关键在于实现小车的自动控制,而在这一点上,单片机就显现出来它的优势:控制简单、方便、快捷。这样一来,单片机就可以充分发挥其资源丰富、有较为强大的控制功能及可位寻址操作功能、价格低廉等优点。因此,这种方案是一种较为理想的方案。针对本设计特点:多开关量输入的复杂程序控制系统,需要擅长处理多开关量的

22、标准单片机,而不能用精简I/O口和程序存储器的小体积单片机,D/A、A/D功能也不必选用。根据这些分析,我选定了STC89C52RA单片机作为本设计的主控装置,51单片机具有功能强大的位操作指令,I/O口均可按位寻址,程序空间多达8K,对于本设计也绰绰有余,更可贵的是51单片机价格非常低廉。在综合考虑了传感器、两部电机的驱动等诸多因素后,我们决定采用一片单片机,充分利用STC89C52单片机的资源。2.4 电机驱动模块方案一:采用继电器对电动机的开或关进行控制,通过开关的切换对小车的方向进行调整。此方案的优点是电路较为简单,缺点是继电器的响应时间慢,易损坏,寿命较短,可靠性不高。方案二:采用电

23、阻网络或数字电位器调节电动机的分压,从而达到分压的目的。但电阻网络只能实现有级调速,而数字电阻的元器件价格比较昂贵。更主要的问题在于一般的电动机电阻很小,但电流很大,分压不仅会降低效率,而且实现很困难。方案三:采用功率三极管作为功率放大器的输出控制直流电机。线性型驱动的电路结构和原理简单,加速能力强,采用由达林顿管组成的 H型桥式电路,具体电路介绍将在后面章节写出。用单片机控制达林顿管使之工作在占空比可调的开关状态下,精确调整电动机转速。这种电路由于工作在管子的饱和截止模式下,效率非常高,H型桥式电路保证了简单的实现转速和方向的控制,电子管的开关速度很快,稳定性也极强,是一种广泛采用的 PWM

24、调速技术。现市面上有很多此种芯片,我选用了L298N。这种调速方式有调速特性优良、调整平滑、调速范围广、过载能力大,能承受频繁的负载冲击,还可以实现频繁的无级快速启动、制动和反转等优点。因此决定采用使用功率三极管作为功率放大器的输出控制电机。2.5 驱动电机选择直流电机和步进电机都可以用于小车驱动。故有两种方案。方案一:使用直流电机,加上适当减速比的减速器。直流电机具有良好的调速性能,控制起来也比较简单。直流电机只要通上直流电源就可连续不断的转动,调节电压的大小就可以改变电机的速度。直流电机的驱动电路实际上就是一个功率放大器。常用的驱动方式是PWM方式,即脉冲宽度调制方式。此方法性能较好,电路

25、和控制都比较简单。方案二:使用步进电机。步进电机具有良好的控制性能。当给步进电机输入一个电脉冲信号时,步进电机的输出轴就转动一个角度,因此可以实现精确的位置控制。与直流电机不同,要使步进电机连续的转动,需要连续不断的输入点脉冲信号,转速的大小由外加的脉冲频率决定。去而且其转动不受电压波动和负载变化的影响,也不受温度、气压等环境因素的影响,仅与控制脉冲有关。但步进电机的驱动相对较复杂,要由控制器和功率放大器组成。具体差别见表2.1。表2.1 电机控制方式对比项目直流电机步进电机调速性能较好较差位置控制精度较差好驱动简单复杂稳定性较好好,仅与控制脉冲有关由上表可以看出步进电机和直流电机都有各自的优

26、点。步进电机能进行精确的位置控制,但驱动电路麻烦,鉴于本设计中小车的位置控制不要求十分精确,直流电机即可满足小车要求的精度。且直流电机易于控制,驱动电路十分简单。2.6 循迹模块方案一:采用简易光电传感器结合外围电路探测,但实际效果并不理想,对行驶过程中的稳定性要求很高,且误测几率较大、易受光线环境和路面介质影响。在使用过程极易出现问题,而且容易因为该部件造成整个系统的不稳定。故最终未采用该方案。方案二:采用三只红外对管,平均置于小车车头前端,根据三只光电开关接受到白线与黑线的情况来控制小车转向来调整车向,测试表明,只要合理安装好三只光电开关的位置就可以很好的实现循迹的功能3。通过比较,本文选

27、取第二种方案来实现循迹。2.7 机械系统本题目要求小车的机械系统稳定、灵活、简单,可选用三轮和四轮式,考虑到现在的汽车多采用四轮式我选用四轮式的设计,使设计更贴近生活需求。驱动和转向方式和现在的汽车一样。2.7.1 电源模块采用6支1.5V电池给电机供电,再用稳压芯片对电池电压进行降压给单片机。采用一套电源可减少小车的负重。电压转换电路如图2.2所示。图2.2 5V稳压电路2.7.2 电池的安装将电池放置在车体的下面,降低车体重心,提高稳定性,同时可增加驱动轮的抓地力,减小轮子空转所引起的误差。2.7.3 驱动部分采用玩具小车原有的驱动电机,由L298N双通道马达驱动模块驱动前后两个马达,其力

28、矩完全可以达到模拟效果。3 主要器件介绍3.1 STC89C52的介绍该单片机是宏晶公司生产的STC89C52,其片内带有8K字节闪速可编程、可擦除寿命1000次程序存储器。该产品与工业标准8051中单片机完全兼容,并且还可支持两种软件可选的省电模式,工作时钟最高可达到24MHz。使实时控制、实时处理的功能更加完善,简化了硬件配置。与MCS-51单片机产品兼容 、8K字节在系统可编程Flash存储器、1000次擦写周期、全静态操作:0Hz33Hz 、三级加密程序存储器、32个可编程I/O口线、三个16位定时器/计数器八个中断源、全双工UART串行通道、低功耗空闲和掉电模式、掉电后中断可唤醒、看

29、门狗定时器、双数据指针、掉电标识符。STC89C52实物如图3.1所示。图3.1 STC89C52引脚示意图STC89C52 是一种低功耗、高性能CMOS8位微控制器,具有8K在系统可编程Flash 存储器。使用高密度非易失性存储器技术制造,与工业80C51产品指令和引脚完全兼容。片上Flash允许程序存储器在系统可编程,亦适于常规编程器。在单芯片上,拥有灵巧的8位CPU 和在线系统可编程Flash,使得STC89C52为众多嵌入式控制应用系统提供高灵活、超有效的解决方案。STC89C52具有以下标准功能:8K字节Flash,256字节RAM,32位I/O口线,看门狗定时器,2个数据指针,三个

30、16位定时器/计数器,一个6向量2级中断结构,全双工串行口,片内晶振及时钟电路。另外,STC89C52可降至0Hz静态逻辑操作,支持2种软件可选择节电模式。空闲模式下,CPU 停止工作,允许RAM、定时器/计数器、串口、中断继续工作。掉电保护方式下,RAM内容被保存,振荡器被冻结,单片机一切工作停止,直到下一个中断或硬件复位为止。8位微控制器,8K字节在系统可编程Flash。P0口:P0口是一个8位漏极开路的双向I/O口。作为输出口,每位能驱动8个TTL逻辑电平。对P0端口写“1”时,引脚用作高阻抗输入。当访问外部程序和数据存储器时,P0口也被作为低8位地址/数据复用。在这种模式下,P0具有内

31、部上拉电阻。在flash编程时,P0口也用来接收指令字节;在程序校验时,输出指令字节。程序校验时,需要外部上拉电阻。P1口:P1口是一个具有内部上拉电阻的8位双向I/O 口,P1输出缓冲器能驱动4个TTL逻辑电平。对P1端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入口使用。作为输入使用时,被外部拉低的引脚由于内部电阻的原因,将输出电流(IIL)。此外,P1.0和P1.2分别作定时器/计数器2的外部计数输入(P1.0/T2)和时器/计数器2的触发输入(P1.1/T2EX),具体如下表所示。在flash编程和校验时,P1口接收低8位地址字节。引脚号第二功能P1.0 T2(定时器/计数器T

32、2的外部计数输入)P1.1 T2EX(定时器/计数器T2的捕捉/重载触发信号和方向控制)P1.5 MOSI(在线系统编程用)P1.6 MISO(在线系统编程用)P1.7 SCK(在线系统编程用)P2口:P2口是一个具有内部上拉电阻的8位双向I/O口,P2输出缓冲器能驱动4个TTL逻辑电平。对P2端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入口使用。作为输入使用时,被外部拉低的引脚由于内部电阻的原因,将输出电流(IIL)。在访问外部程序存储器或用16位地址读取外部数据存储器(例如执行MOVX DPTR)时,P2口送出高八位地址。在这种应用中,P2口使用很强的内部上拉发送1。在使用8位地

33、址(如MOVX RI)访问外部数据存储器时,P2口输出P2锁存器的内容。在flash编程和校验时,P2口也接收高8位地址字节和一些控制信号。P3口:P3口是一个具有内部上拉电阻的8位双向I/O 口,P2 输出缓冲器能驱动4 个TTL逻辑电平。对P3 端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入口使用。作为输入使用时,被外部拉低的引脚由于内部电阻的原因,将输出电流(IIL)。 P3口亦作为STC89C52特殊功能(第二功能)使用,如下表所示。在flash编程和校验时,P3口也接收一些控制信号。端口引脚第二功能P3.0 RXD(串行输入口)P3.1 TXD(串行输出口)P3.2 INT

34、O(外中断0)P3.3 INT1(外中断1)P3.4 TO(定时/计数器0)P3.5 T1(定时/计数器1)P3.6 WR(外部数据存储器写选通)P3.7 RD(外部数据存储器读选通)此外,P3口还接收一些用于FLASH闪存编程和程序校验的控制信号。RST复位输入。当振荡器工作时,RST引脚出现两个机器周期以上高电平将是单片机复位。ALE/PROG当访问外部程序存储器或数据存储器时,ALE(地址锁存允许)输出脉冲用于锁存地址的低8位字节。一般情况下,ALE仍以时钟振荡频率的1/6输出固定的脉冲信号,因此它可对外输出时钟或用于定时目的。要注意的是:每当访问外部数据存储器时将跳过一个ALE脉冲。对

35、FLASH存储器编程期间,该引脚还用于输入编程脉冲(PROG)。如有必要,可通过对特殊功能寄存器(SFR)区中的8EH单元的D0位置位,可禁止ALE操作。该位置位后,只有一条MOVX和MOVC指令才能将ALE激活。此外,该引脚会被微弱拉高,单片机执行外部程序时,应设置ALE禁止位无效。PSEN程序储存允许(PSEN)输出是外部程序存储器的读选通信号,当STC89C52由外部程序存储器取指令(或数据)时,每个机器周期两次PSEN有效,即输出两个脉冲,在此期间,当访问外部数据存储器,将跳过两次PSEN信号。EA/VPP外部访问允许,欲使CPU仅访问外部程序存储器(地址为0000H-FFFFH),E

36、A端必须保持低电平(接地)。需注意的是:如果加密位LB1被编程,复位时内部会锁存EA端状态。如EA端为高电平(接Vcc端),CPU则执行内部程序存储器的指令。FLASH存储器编程时,该引脚加上+12V的编程允许电源Vpp,当然这必须是该器件是使用12V编程电压Vpp。3.2 L298N的介绍L298是SGS公司的产品,比较常见的是15脚Multiwatt封装的L298,内部同样包含4通道逻辑驱动电路。可以方便的驱动两个直流电机,或一个两相步进电机。L298是一种高电压、大电流电机驱动芯片。该芯片的主要特点是:工作电压高,最高工作电压可达46V;输出电流大,瞬间峰值电流可达3A,持续工作电流为2

37、A;内含两个H桥的高电压大电流全桥式驱动器,可以用来驱动直流电动机和步进电动机、继电器、线圈等感性负载;采用标准TTL逻辑电平信号控制;具有两个使能控制端,在不受输入信号影响的情况下允许或禁止器件工作;有一个逻辑电源输入端,使内部逻辑电路部分在低电压下工作;可以外接检测电阻,将变化量反馈给控制电路。3.2.1 L298的引脚功能L298芯片的引脚图如图3.2所示。 图3.2 L298引脚图其引脚功能如表3.1所示。表3.1 L298引脚功能表引脚符号 功能1SENSING A 与地连接电流检测电阻,并向驱动芯片反馈检测到的信号15SENSING B 与地连接电流检测电阻,并向驱动芯片反馈检测到

38、的信号2OUT1 此脚是全桥式驱动器A的两个输出端,用来连接负载3OUT2 此脚是全桥式驱动器A的两个输出端,用来连接负载4Vs 电机驱动电源输入端5IN1 输入标准的TTL逻辑电平信号,控制全桥式驱动器A的开关7IN2 输入标准的TTL逻辑电平信号,控制全桥式驱动器A的开关6ENABLE A 使能控制端.输入标准TTL逻辑电平信号;低电平时全桥式驱动器禁止工作11ENABLE B 使能控制端.输入标准TTL逻辑电平信号;低电平时全桥式驱动器禁止工作8GND 接地端,芯片本身的散热片与8脚相通9Vss 逻辑控制部分的电源输人端口10IN3 输入标准的TTL逻辑电平信号,控制全桥式驱动器B的开关

39、12IN4 输入标准的TTL逻辑电平信号,控制全桥式驱动器B的开关13OUT3 此脚是全桥式驱动器B的两个输出端,用来连接负载14OUT4 此脚是全桥式驱动器B的两个输出端,用来连接负载3.2.2 L298的运行参数L298的运行参数如表3.2所示。表3.2 L198的运行参数参数测试环境最小值最大值驱动电源电压 Vs持续工作时2.5V46V逻辑电源电压Vss-4.5V7V输入低电平电压ViL-0.3V1.5V输入高电平电压ViH-2.3VVss使能端低电平电压Ven=L-0.3V1.5V使能端高电平电压Ven=H-2.3VVss全桥式驱动电压Vce(sat)IL=1A IL=2A1.8V4.

40、5V3.2.3 L298的逻辑控制L298的逻辑控制如表3.3所示。其中C、D分别为IN1、IN2或IN3、IN4;L为低电平,H为高电平,为不管是低电平还是高电平。表3.3 L298N直流电机控制的逻辑真值表输入输出Ven=HC=H;D=L正转C=L;D=H反转C=D制动Ven=LC=;D=没有输出,电机不工作3.3 TCRT5000的介绍TCRT5000光电传感器模块是基于TCRT5000红外光电传感器设计的一款红外反射式光电开关。传感器采用高发射功率红外光电二极管和高灵敏度光电晶体管组成,输出信号经施密特电路整形,稳定可靠。TCRT5000具有结构紧凑建设发光光源和探测器排列在同一方向,

41、以感知对象的存在从对象使用反射红外线光束。工作波长为950毫米。该探测器光电晶体管组成。工作时由蓝色发射管发射红外线,红外线由遮挡物反射回来被接收管接收。接收反射光线后的接收管呈导通状态,与一电阻串联即可组成一个由发射管控制的分压电路,由此可实现对遮挡物反射光线强度的检测。我们经常利用这一特性去实现颜色识别。其实物图如图3.3所示,引脚图如图3.4所示。 图3.3 TCRT5000实物图 图3.4 TCRT5000引脚定义3.4 LM324的介绍M324是四运放集成电路,它采用14脚双列直插塑料封装。它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。每一组运算放大器可用

42、图3.5所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的相位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。LM324的引脚排列如图3.6所示。 图3.5 单个运放符号 图3.6 LM324引脚图下面介绍LM324在电压比较电路中的应用。当去掉运放的反馈电阻时,或者说反馈电阻趋于无穷大时(即开环状态),理论上认为运放的开环放大倍数也为无穷大(实际上是很大,如LM324运放开环放大倍数为100dB,即10万倍)。此

43、时运放便形成一个电压比较器,其输出如不是高电平(V+),就是低电平(V-或接地)。当正输入端电压高于负输入端电压时,运放输出低电平。图3.7 LM324电压比较电路如图3.7中使用两个运放组成一个电压上下限比较器,电阻R1、R1组成分压电路,为运放A1设定比较电平U1;电阻R2、R2组成分压电路,为运放A2设定比较电平U2。输入电压U1同时加到A1的正输入端和A2的负输入端之间,当Ui U1时,运放A1输出高电平;当Ui U2,则当输入电压Ui越出U2,U1区间范围时,LED点亮,这便是一个电压双限指示器。若选择U2 U1,则当输入电压在U2,U1区间范围时,LED点亮,这是一个“窗口”电压指

44、示器。此电路与各类传感器配合使用,稍加变通,便可用于各种物理量的双限检测、短路、断路报警等。4 硬件设计4.1总体设计从智能循迹小车的设计要求出发,经过前面的方案论证我决定用原有的玩具小车作为设计模型。再在小车身上加上轨迹识别和马达驱动装置来完成整个功能。智能小车采用后轮驱动,前轮转换方向。循迹红外发射与接收管分别装在车头下的左中右。当车身下左边的传感器检测到超出黑线时,前轮右转,当车身下右边传感器检测到超出黑线时,车轮左转。直到小车完全回到黑线。如果转向过程中中间传感器也检测到超出黑线则说明小车以这个转向角度不能回到黑线,则改变前轮方向并后退。同样可以起到转向的作用,避免小车离线太远最终回不

45、到黑线上。当小车完全回到黑线再继续向前,在检测到下一次出线后再进行同样的调整。整体设计框图如图4.1所示。单片机控制系统电压比较 黑线识别模块马达驱动模块红外轨迹识别图4.1 整体设计框图考虑到电机控制要使用PWM波形,而STC89C52单片机本身不能产生PWM,需要外加电路或使用软件的方式实现,为减少硬件电路,这里选用软件产生PWM方式。整体原理电路图如图4.2所示。图4.2 整体原理图4.2 STC89C52单片机控制电路单片机控制电路由但单片机最小系统组成,主要作用是接受探头传来的电压信号,再通过程序设定的逻辑算法给出下一级马达驱动电路的指令。单片机最小系统包括主控IC,外部时钟电路,复

46、位电路和电源组成。本设计采用如图4.3所示的单片机最先系统。在此就图4.3参照解释一下51单片机最小系统各子电路的特点。图4.3 主控电路4.2.1 时钟电路XTAL1 和XTAL2 是独立的输入和输出反相放大器,它们可以被配置为使用石英晶振的片内振荡器,或者是器件直接由外部时钟驱动。图4.3中采用的是内时钟模式,即采用利用芯片内部的振荡电路,在XTAL1、XTAL2 的引脚上外接定时元件(一个石英晶体和两个电容),内部振荡器便能产生自激振荡。一般来说晶振可以在1.212MHz 之间任选,甚至可以达到24MHz 或者更高,但是频率越高功耗也就越大。在本实验套件中采用的11.0592M 的石英晶

47、振。和晶振并联的两个电容的大小对振荡频率有微小影响,可以起到频率微调作用。当采用石英晶振时,电容可以在2040pF 之间选择(本实验套件使用30pF);当采用陶瓷谐振器件时,电容要适当地增大一些,在3050pF 之间。通常选取33pF 的陶瓷电容就可以了。另外值得一提的是如果在设计单片机系统的印刷电路板(PCB)时,晶体和电容应尽可能与单片机芯片靠近,以减少引线的寄生电容,保证振荡器可靠工作。检测晶振是否起振的方法可以用示波器可以观察到XTAL2 输出的十分漂亮的正弦波,也可以使用万用表测量(把挡位打到直流挡,这个时候测得的是有效值)XTAL2和地之间的电压时,可以看到2V左右一点的电压。4.

48、2.2 复位电路 单片机系统中,复位电路是非常关键的,当程序跑飞(运行不正常)或死机(停止运行)时,就需要进行复位。MCS-5l 系列单片机的复位引脚RST( 第9管脚) 出现2个机器周期以上的高电平时,单片机就执行复位操作。如果RST 持续为高电平,单片机就处于循环复位状态。复位操作通常有两种基本形式:上电自动复位和开关复位。复位电路就包括了这两种复位方式。上电瞬间,电容两端电压不能突变,此时电容的负极和RESET相连,电压全部加在了电阻上,RESET的输入为高,芯片被复位。随之+5V电源给电容充电,电阻上的电压逐渐减小,最后约等于0,芯片正常工作。并联在电容的两端为复位按键,当复位按键没有

49、被按下的时候电路实现上电复位,在芯片正常工作后,通过按下按键使RST管脚出现高电平达到手动复位的效果。一般来说,只要RST管脚上保持10ms以上的高电平,就能使单片机有效的复位。图中所示的复位电阻和电容为经典值,实际制作是可以用同一数量级的电阻和电容代替,读者也可自行计算RC充电时间或在工作环境实际测量,以确保单片机的复位电路可靠。4.2.3 EA/VPP(31脚)的功能和接法51单片机的EA/VPP(31脚)是内部和外部程序存储器的选择管脚。当EA 保持高电平时,单片机访问内部程序存储器;当EA保持低电平时,则不管是否有内部程序存储器,只访问外部存储器。对于现今的绝大部分单片机来说,其内部的

50、程序存储器(一般为flash)容量都很大,因此基本上不需要外接程序存储器,而是直接使用内部的存储器。在本实验套件中,EA管脚接到了VCC 上,只使用内部的程序存储器。4.2.4 P0口外接上拉电阻51 单片机的P0 端口为开漏输出,内部无上拉电阻如图4.4所示。所以在当做普通I/O 输出数据时,由于V2截止,输出级是漏极开路电路,要使“1”信号(即高电平)正常输出,必须外接上拉电阻。图4.4 P0端口的1位结构另外,避免输入时读取数据出错,也需外接上拉电阻。在这里简要的说下其原因:在输入状态下,从锁存器和从引脚上读来的信号一般是一致的,但也有例外。例如,当从内部总线输出低电平后,锁存器Q0,Q

51、1,场效应管V1开通,端口线呈低电平状态。此时无论端口线上外接的信号是低电平还是高电平,从引脚读入单片机的信号都是低电平,因而不能正确地读入端口引脚上的信号。又如,当从内部总线输出高电平后,锁存器Q1,Q0,场效应管V1截止。如外接引脚信号为低电平,从引脚上读入的信号就与从锁存器读入的信号不同。所以当P0 口作为通用I/O 接口输入使用时,在输入数据前,应先向P0 口写“1”,此时锁存器的Q 端为“0”,使输出级的两个场效应管V1、V2均截止,引脚处于悬浮状态,才可作高阻输入。总结来说:为了能使P0口在输出时能驱动NMOS电路和避免输入时读取数据出错,需外接上拉电阻。在设计中采用的是外加一个1

52、0K排阻。此外,51单片机在对端口P0P3 的输入操作上,为避免读错,应先向电路中的锁存器写入“1”,使场效应管截止,以避免锁存器为“0”状态时对引脚读入的干扰。4.3 TCRT5000黑色轨迹识别电路小车循迹原理是小车在画有黑线的白纸 “路面”上行驶,由于黑线和白纸对光线的反射系数不同,可根据接收到的反射光的强弱来判断“道路”黑线。本次设计规定正常行驶时三个红外探头都在黑色轨迹之内,如果有探头检测到车体开始偏离轨道则由控制系统做出相应响应使车体回到轨道上。此电路模块就是用于检测车体是否超出轨道并反馈给下一级电路。这一方法经常被叫做红外探测法。红外探测法,即利用红外线在不同颜色的物理表面具有不

53、同的反射性质的特点。在小车行驶过程中不断地向地面发射红外光,当红外光遇到白色地面时发生漫发射,反射光被装在小车上的接收管接收;如果遇到黑线则红外光被吸收,则小车上的接收管接收不到信号。如图4.5轨迹识别电路所示,发射管(1、2端)与阻值为330欧姆的电阻串联发射红外线。接收管(3、4)与阻值为47K欧姆的电阻串联。在没有接收到反射光线时接收管截止呈高阻态,TX输出高电平。当接收管接收到反射光线时,接收管被导通,并且电阻远小于47K,TX输出低电平。黑色轨迹识别电路如图4.5所示。图4.5 黑色轨迹识别电路4.4 LM324电压比较电路电压比较器式在运放的基础上去掉反馈电阻使放大倍数趋于无穷大。

54、此时形成了一个电压比较器。当同相端电压大于反相端电压时比较器输出高电平,当反相端电压高于同相端电压时输出端输出度电平。如图4.6所示电压比较电路,用了LM324内部3个单独的运放外接一个可调电阻输入基准电压。基准电压加在反相输入端上,上一级电路反馈过来的电压从电压比较器的同相端输入。当TCRT5000反馈的电压高于基准电压时,比较器输出高电平。当TCRT5000反馈的电压低于基准电压时,比较器输出低电平。这样就使探头把地面的反射光线的程度只分成了两种情况,易于单片机识别。考虑到地面的粗超程度不一样我们可以用可调电位器去调节基准电压,经过轨道实际测量后确定基准电压的值。电压比较电路如图4.6所示。图4.6 电压比较电路4.5电机驱动电路4.5.1驱动电路小车使用的是直流电机。从单片机输出的信号功率很弱,即使在没有其它外在负载时也无法带动电机,所以在实际电路中我们加入了电机驱动芯片提高输入电机信号的功率,从而能够根据需要控制电机转动。直流电机常用的PWM,及脉宽调制方式驱动。本设计中电机驱动采用L

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论