版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、16 6. .3 3等比数列及其前等比数列及其前n n项和项和 2知识梳理双基自测21自测点评1.等比数列 (1)等比数列的定义一般地,如果一个数列从第项起,每一项与它的前一项的比等于,那么这个数列叫做等比数列,这个常数叫做等比数列的,公比通常用字母表示.数学2 同一个常数 公比 q(q0) 3知识梳理双基自测21自测点评(2)等比中项如果a,G,b成等比数列,那么G叫做a与b的等比中项.即:G是a与b的等比中项a,G,b成等比数列.(3)等比数列的通项公式an=;可推广为an=.(4)等比数列的前n项和公式G2=ab a1qn-1 amqn-m 4知识梳理双基自测自测点评212.等比数列及其
2、前n项和的性质(1)若k+l=m+n(k,l,m,nN*),则akal=;若m+n=2k,则 (2)相隔等距离的项组成的数列仍是等比数列,即ak,ak+m,ak+2m,仍是等比数列,公比为.(3)若an,bn(项数相同)是等比数列,则aman qm 5知识梳理双基自测自测点评21当q1,则a3=. 答案解析解析关闭 答案解析关闭11知识梳理双基自测自测点评1.等差数列的首项和公差可以为零,且等差中项唯一;而等比数列的首项和公比均不为零,等比中项可以有两个值.2.在等比数列中,由an+1=qan,q0,并不能立即判断an为等比数列,还要验证a10;若aman=apaq,则m+n=p+q不一定成立
3、,因为常数列也是等比数列,但若m+n=p+q,则有3.在运用等比数列的前n项和公式时,如果不能确定q与1的关系,必须分q=1和q1两种情况讨论.12考点1考点2考点3考点4例1(1)设an是由正数组成的等比数列,Sn为其前n项和.已知a2a4=1,S3=7,则S5等于()(2)(2016银川一中一模)在等比数列an中,若a1= ,a4=3,则该数列前五项的积为()A.3 B.3C.1 D.1(3)在等比数列an中,a2+a5=18,a3+a6=9,an=1,则n=.思考解决等比数列基本运算问题的常见思想方法有哪些? 答案 答案关闭 (1)B(2)D(3)6 13考点1考点2考点3考点414考点
4、1考点2考点3考点4(3)a3+a6=q(a2+a5),q=a2+a5=18,a1q+a1q4=18.a1=32.an=a1qn-1=1,解得n=6.15考点1考点2考点3考点4解题心得解决等比数列有关问题的常见思想方法(1)方程的思想:等比数列中有五个量a1,n,q,an,Sn,一般可以“知三求二”,通过列方程(组)求关键量a1和q,问题可迎刃而解.(2)分类讨论的思想:因为等比数列的前n项和公式涉及对公比q的分类讨论,所以当某一参数为公比进行求和时,就要对参数是否为1进行分类求和.(3)整体思想:应用等比数列前n项和公式时,常把qn或 当成整体进行求解.16考点1考点2考点3考点4对点训练
5、对点训练1(1)(2016陕西汉中市质检二)已知an为等比数列,a1=3,且4a1,2a2,a3成等差数列,则a3+a5等于()A.189 B.72C.60 D.33(2)已知an是等差数列,公差d不为零,前n项和是Sn,若a3,a4,a8成等比数列,则()A.a1d0,dS40B.a1d0,dS40,dS40D.a1d0 答案 答案关闭(1)C(2)B 17考点1考点2考点3考点4解析: (1)4a1,2a2,a3成等差数列,4a2=4a1+a3,即4a1q=4a1+a1q2,q2-4q+4=0.q=2.a3+a5=a1(q2+q4)=3(4+16)=60.(2)设an的首项为a1,公差为d
6、,则a3=a1+2d,a4=a1+3d,a8=a1+7d.a3,a4,a8成等比数列,(a1+3d)2=(a1+2d)(a1+7d),即3a1d+5d2=0.18考点1考点2考点3考点4例2已知数列an的前n项和Sn=1+an,其中0.(1)证明an是等比数列,并求其通项公式;思考判断或证明一个数列是等比数列有哪些方法?19考点1考点2考点3考点420考点1考点2考点3考点4解题心得1.证明数列an是等比数列常用的方法(2)等比中项法,证明 =an-1an+1;(3)通项公式法,若数列通项公式可写成an=cqn-1(c,q均是不为0的常数,nN*),则an是等比数列.2.若判断一个数列不是等比
7、数列,则只要证明存在连续三项不成等比数列即可.21考点1考点2考点3考点4对点训练对点训练2在数列an中,Sn为数列an的前n项和,且Sn=1+kan(k0,且k1).(1)求an;22考点1考点2考点3考点423考点1考点2考点3考点4考向一等比数列项的性质的应用例3(1)(2016山西晋城高三期末)在由正数组成的等比数列an中,若a3a4a5=3,则sin(log3a1+log3a2+log3a7)的值为()(2)在正项等比数列an中,已知a1a2a3=4,a4a5a6=12,an-1anan+1=324,则n=.思考经常用等比数列的哪些性质简化解题过程? 答案 答案关闭 (1)B(2)1
8、4 24考点1考点2考点3考点425考点1考点2考点3考点4考向二等比数列前n项和的性质的应用例4设等比数列an的前n项和为Sn.若S2=3,S4=15,则S6=()A.31 B.32C.63 D.64思考本题应用什么性质求解比较简便? 答案解析解析关闭S2=3,S4=15,由等比数列前n项和的性质,得S2,S4-S2,S6-S4成等比数列,(S4-S2)2=S2(S6-S4),即(15-3)2=3(S6-15),解得S6=63,故选C. 答案解析关闭C 26考点1考点2考点3考点4解题心得1.在解答等比数列的有关问题时,为简化解题过程常常利用等比数列项的如下性质:(1)通项公式的推广:an=
9、amqn-m;(2)等比中项的推广与变形: =aman(m+n=2p)及akal=aman(k+l=m+n).2.对已知条件为等比数列的前几项和,求其前多少项和的问题,应用公比不为-1的等比数列前n项和的性质:Sn,S2n-Sn,S3n-S2n仍成等比数列比较简便.27考点1考点2考点3考点4对点训练对点训练3(1)(2016安徽“江南十校”联考)已知在各项均为正数的等比数列an中,a5a6=4,则数列log2an的前10项和为()A.5B.6C.10 D.12(2)已知等比数列an的首项a1=-1,其前n项和为Sn,若 ,则公比q=. 答案解析解析关闭 答案解析关闭28考点1考点2考点3考点
10、4例5(2016天津,文18)已知an是等比数列,前n项和为Sn(nN*),且(1)求an的通项公式;(2)若对任意的nN*,bn是log2an和log2an+1的等差中项,求数列(-1) 的前2n项和.思考解决等差数列、等比数列的综合问题的基本思路是怎样的?29考点1考点2考点3考点430考点1考点2考点3考点4解题心得等差数列和等比数列的综合问题,涉及的知识面很宽,题目的变化也很多,但是万变不离其宗,只要抓住基本量a1,d(q)充分运用方程、函数、转化等数学思想方法,合理调用相关知识,就不难解决这类问题.31考点1考点2考点3考点4对点训练对点训练4已知等差数列an满足:a1=2,且a1,
11、a2,a5成等比数列.(1)求数列an的通项公式;(2)记Sn为数列an的前n项和,是否存在正整数n,使得Sn60n+800?若存在,求n的最小值;若不存在,说明理由.解 (1)设数列an的公差为d,依题意,2,2+d,2+4d成等比数列,故有(2+d)2=2(2+4d),化简得d2-4d=0,解得d=0或d=4.当d=0时,an=2;当d=4时,an=2+(n-1)4=4n-2,从而得数列an的通项公式为an=2或an=4n-2.32考点1考点2考点3考点4(2)当an=2时,Sn=2n.显然2n60n+800成立.当an=4n-2时,即n2-30n-4000,解得n40或n60n+800成
12、立,n的最小值为41.综上,当an=2时,不存在满足题意的n;当an=4n-2时,存在满足题意的n,其最小值为41.33考点1考点2考点3考点41.等比数列基本量的运算是等比数列中的一类基本问题,数列中有五个量a1,n,q,an,Sn,一般可以“知三求二”,通过列方程(组)便可迎刃而解.2.判定等比数列的方法(1)定义法: (q是不为零的常数,nN*)an是等比数列.(2)通项公式法:an=cqn-1(c,q均是不为零的常数,nN*)an是等比数列.(3)等比中项法: =anan+2(anan+1an+20,nN*)an是等比数列.34考点1考点2考点3考点43.求解等比数列问题常用的数学思想
13、(1)方程思想:如求等比数列中的基本量;(2)分类讨论思想:如求和时要分q=1和q1两种情况讨论,判断单调性时对a1与q分类讨论.1.在等比数列中,易忽视每一项与公比都不为0.2.求等比数列的前n项和时,易忽略q=1这一特殊情形.35审题答题指导如何理解条件和转化条件典例在等差数列an中,a3+a4+a5=84,a9=73.(1)求数列an的通项公式;(2)对任意mN*,将数列an中落入区间(9m,92m)内的个数记为bm,求数列bm的前m项和Sm.审题要点(1)题干中已知条件有三个:“数列an是等差数列”和两个等式;(2)第(2)问中所含条件可理解为:数列an的各项在所给区间的项数为bm;(3)第(2)问中条件的转化方法:文字语言转化为符号语言,即求满足9man92m的n的范围.36
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年高端木器定制加工劳务分包合同模板3篇
- 填埋场硫酸管理员合同(2篇)
- 个人融资借款合同示范文本(2024年版)
- 2024演出经纪公司与演员租赁合同
- 电子竞技场馆租赁使用合同
- 专职资料员2024年度劳务合作协议版B版
- 2024年高品质板材买卖合同版B版
- 分支机构建设合作协议
- 2024年销售合同执行跟踪3篇
- 专项咨询协议:高效解决方案协议版B版
- 电子教案-《交往与合作》(第一单元第二课+敲开人际关系的大门)-1
- 中金在线测评多少题
- 公路桥梁工程施工安全风险评估指南
- 2024-2030年全球及中国通过硅通孔(TSV)技术行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- PEP新人教版小学英语单词三到五年级
- 拆除猪场补偿协议书模板
- 2024年秋季学期新Join In剑桥版(三年级起)英语三年级上册课件 Supplementary activities Unit 6
- 2024年新人教版道德与法治七年级上册全册教案(新版教材)
- 2024年高中生物新教材同步选择性必修第三册学习笔记第3章 本章知识网络
- 初中物理期末复习+专题5+综合能力题+课件++人教版物理九年级全一册
- 《创伤失血性休克中国急诊专家共识(2023)》解读课件
评论
0/150
提交评论