从课本的一道例题谈起_第1页
从课本的一道例题谈起_第2页
从课本的一道例题谈起_第3页
从课本的一道例题谈起_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、BD长为20cm, AC长为从课本的一道例题谈起1. 写在前面亲爱的同学们,在学习本节课时相信大家对例题的印象是非常深刻的,原因在哪里呢?让我们再来回顾本节课的例题例1如图1,四边形ABCD是边长为13cm的菱形,其中对角线BD长为10cm.求: 对角线AC的长度;菱形ABCD勺面积.解: (1):四边形ABCD是菱形, ACL BD,即/ AED=90,1DE BDX 10=5 (cm)2在Rt ADE中,由勾股定理可得:AE 一DE7 ,132 52 12(cm). AC=2AE=Z 12=24(cm).(2) S 菱形 ABC= S ABD+ S CBD1=2X SAABD=2X X B

2、DX AE2=BDX AE=1(X 12=120(cm2).2. 一类四边形面积求解的方法相信同学们完成例题后都会对菱形面积的处理感觉非常妙,对于这种解题的技巧你是一 笑而过,还是让你陷入了沉思呢?今天就让我们一起深入探讨一类图形的面积求解问题。通过本节课的学习我们知道菱形的面积不仅可以用底乘以高来求,而且知道菱形的面积等于对角线乘积的一半.即如图1所示:S菱形ABCFACX BD.2仔细分析上述的证明过程我们会发现,我们日常生活中常见的风筝的形状即“筝形”也是可以用这种方法求解的例2如图2,四边形ABCD是我们常见的风筝的图案,其中对角线40cm AC垂直平分BD垂足为E,求筝形ABCD勺面

3、积.解析:由已知: S 四边形 ABC= S AABD+ S CBD11=丄 X BDX AEX BDX CE22=丄 X BDX (AE+CE)= - X BDX AC.图1图22 2我们发现这个结论对于筝形依然成立那么到底满足什么条件的图形可以通过这种方法求面积呢?仔细观察不难发现,只要四 边形的对角线互相垂直我们就可以利用这一结论求解例3如图3,四边形ABCD勺对角线AC BD互相垂直,其中对角线 BD长为20cm, AC长A为15cm垂足为E,求四边形ABCD的面积.解析:通过上述求解过程,同学们应该能求出结果为研究到这里,我们可以得出一个结论:结论1 :对角线互相垂直的四边形的面积等

4、于对角线乘积的一半3. 普通四边形面积求解的拓展通过结论1的研究对于普通的对角线不垂直的四边形的面积的求解能不能有什么启示呢?下面让我们一起来研究.如图4所示四边形ABCD勺对角线BD长为20cm根据前面三个例题的求解方式只要我们、 1知道AE与 CF的长度即可求出四边形的面积,仿照上面写出如下算式:S四边形ABC= SAABD+ SCB=2于是我们就得出了第二条结论:结论2:任意四边形的面积等于一条对角线与其余两顶点到这条对角线距离 和的乘积的一半.以上的研究就是从课本的一道例题想到的,同学们对于数学知识的学习,我们不能仅仅 满足于一个个的题目会解,更要学会反思研究,思考每一个结论,每一个题目背后的本质图3图5 如图6,四边形ABCD放在了一组平行线中,已知BD=6cm四边形ABCD勺面积为24cmF面就让我们进入小试牛刀环节,来体验研究的成果吧4. 若有所思之后的小试牛刀:(1)如图 5,矩形 ABCD中, AD=6cm AB=4cm EF/ AD,点 G H分别是 AD BC上任一点,则两条平行线间的距离为cm.答案:12;(2) 2.11X BDX AE+1 2 X BDX CF=1 X BDX (AE+CF).22通过这个算式我们发现我们刚开

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论