版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、会计学1点和圆的位置关系点和圆的位置关系 如图,设如图,设O O 的半径为的半径为r r,A A点在圆内点在圆内B B点在圆上点在圆上C C点在圆外点在圆外点点A在在 O内内 点点B在在 O上上 点点C在在 O外外 反过来,如果已知点到圆心的距离和圆的半径之反过来,如果已知点到圆心的距离和圆的半径之间的关系,可以判断点和圆的位置关系间的关系,可以判断点和圆的位置关系? OAr OB=r OCrABCrOAr OB=r OCrO知识点一知识点一第1页/共32页点和圆的位置关系点和圆的位置关系点在圆点在圆内内dr点在圆点在圆上上点在圆点在圆外外drdr练习:已知圆的半径等于练习:已知圆的半径等于5
2、厘米,若点到圆心的距离是厘米,若点到圆心的距离是: 8厘米厘米 4厘米厘米 5厘米。厘米。 请你分别说出点与圆的位置关系。请你分别说出点与圆的位置关系。O 符号符号 读作读作“等价等价于于”, ,它表示从符号它表示从符号 的左端可以得到右端的左端可以得到右端, ,从从右端也可以得到左端右端也可以得到左端第2页/共32页圆外的点圆外的点圆内的点圆内的点圆上的点圆上的点 平面上的一个圆,把平面上的点分成三类:圆上的平面上的一个圆,把平面上的点分成三类:圆上的点,圆内的点和圆外的点。点,圆内的点和圆外的点。圆的内部可以看成是 ;圆的外部可以看成是 。到圆心的距离大于半径的点的集合思考:平面上的一个圆
3、把平面上的点分成哪几部分?到圆心的距离小于半径的点的集合到圆心的距离小于半径的点的集合第3页/共32页圆上圆上66第4页/共32页OA=810 点点C在圆在圆外外 圆内圆内圆圆上上圆圆外外2. O的半径的半径10cm,A、B、C三点到圆心三点到圆心的距离分别为的距离分别为8cm、10cm、12cm,则,则点点A、B、C与与 O的位置关系是:的位置关系是:第5页/共32页3. O的半径的半径10cm,A、B、C三点到圆心的距离分别为三点到圆心的距离分别为8cm、10cm、12cm,则点,则点A、B、C与与 O的位置关系是的位置关系是:点:点A在在 ;点;点B在在 ;点;点C在在 。 O内内C O
4、上上 O外外34.正方形正方形ABCD的边长为的边长为 cm,以,以A为为圆心圆心2cm为半径作为半径作 A,则点,则点C( )A.在在 A上上 B.在在 A内内 C.在在 A外外 D.无法判断无法判断 3 33 3A AD DC CB B5、你认为判断点和圆的位置关系的步骤是怎样的?、你认为判断点和圆的位置关系的步骤是怎样的?一作、二算、三判一作、二算、三判第6页/共32页 6.如图,如图,ABC中,中,C=90,BC=3,AC=6,CD为中线,为中线,以以C为圆心为圆心,以以 为半径作圆,为半径作圆,则点则点A、B、D与圆与圆C的关系如何?的关系如何?DCBA523随堂练习随堂练习第7页/
5、共32页OO第8页/共32页问:如图已知矩形问:如图已知矩形ABCD的边的边AB=3厘米,厘米,AD=4厘米厘米ADCB(1)以点A为圆心,3厘米为半径作圆A,则点B、C、D与圆A的位置关系如何? (B在圆上,D在圆外,C在圆外)(2)以点A为圆心,4厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?(B在圆内,D在圆上,C在圆外)(3)以点A为圆心,5厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?(B在圆内,D在圆内,C在圆上)第9页/共32页AAB过一点可作几条直线?过两点可以作几条直线?过一点可作几条直线?过两点可以作几条直线?过三点呢?过三点呢?过两点有且只有一条直线过两点
6、有且只有一条直线(直线公理直线公理)(“有且只有有且只有”就是就是“确定确定”的意的意思)思)知识点二知识点二第10页/共32页第11页/共32页 经过经过一个一个已知点已知点A能确能确定一个圆吗定一个圆吗?A 经过一个经过一个已知点能作已知点能作无无数数个圆个圆第12页/共32页 经过经过两个两个已知点已知点A、B能能确定一个圆吗确定一个圆吗?AB 经过两个已知点经过两个已知点A、B能作能作无数无数个圆个圆 经过两个已经过两个已知点知点A、B所作的所作的圆的圆心在怎样的圆的圆心在怎样的一条直线上一条直线上? 它们的圆心都在线段它们的圆心都在线段AB的垂直平分线上。的垂直平分线上。第13页/共
7、32页ABC为什么过同一直线上的三点不能作圆呢?为什么过同一直线上的三点不能作圆呢?因为因为DEDEFGFG,所以没有交点,所以没有交点, 即即没有过这三点的圆心没有过这三点的圆心DFEG1.当三点共线(不能作圆不能作圆)参见课本参见课本P92反证法反证法 经过三个已知点经过三个已知点A,B,C能确定一个圆吗?能确定一个圆吗?第14页/共32页ABC1 1、连结、连结ABAB,作线段,作线段ABAB的垂的垂直平分线直平分线DEDE,ODEGF2 2、连结、连结BCBC,作线段,作线段BCBC的垂直平的垂直平分线分线FGFG,交,交DEDE于点于点O ,3 3、以、以O O为圆心,为圆心,OBO
8、B为半径作圆,为半径作圆,作法:作法:O就是所求作的圆就是所求作的圆已知已知:不在同一直线上的三点:不在同一直线上的三点 A、B、C求作:求作: O,使它经过使它经过A、B、C2、当三点不共线当三点不共线第15页/共32页,n经过点经过点A,B,C三点可以作一个圆三点可以作一个圆,并且只能作一个圆并且只能作一个圆.第16页/共32页定理:不在同一直线上的三点确定一个圆.OABC第17页/共32页O1.1.由定理可知:由定理可知:经过三角形经过三角形三个顶点可以作一个圆三个顶点可以作一个圆. .并并且只能作一个圆且只能作一个圆.2 2.经过三角形各顶点的圆叫经过三角形各顶点的圆叫做做三角形的外接
9、圆三角形的外接圆。3 3.三角形三角形外接圆的圆心叫做外接圆的圆心叫做三三角形的外心角形的外心,这个三角形叫,这个三角形叫做做这个圆的内接三角形这个圆的内接三角形。ABC第18页/共32页圆的内接三角形圆的内接三角形三角形的外接圆三角形的外接圆三角形的外心三角形的外心ABCO 外心 1.三边垂直平分线的交点三边垂直平分线的交点2.到三个顶点距离相等到三个顶点距离相等一个三角形的外接圆有几个?一个三角形的外接圆有几个?一个圆的内接三角形有几个?一个圆的内接三角形有几个?第19页/共32页OABCABCO直角三角形外心是直角三角形外心是斜边斜边ABAB的中点的中点钝角三角形外心在钝角三角形外心在A
10、BCABC的外面的外面三角形的外心是否一定在三角形的内部?第20页/共32页画出过以下三角形的顶点的圆画出过以下三角形的顶点的圆ABCOABCCABOO1、比较这三个三角形外心的位置,、比较这三个三角形外心的位置,你有何发现?你有何发现?(图图1 1)(图(图2 2)(图(图3 3)2、图、图2中,若中,若AB=3,BC=4,则它的外接,则它的外接圆半径是多少?圆半径是多少?锐角三角形的外心位于三角形锐角三角形的外心位于三角形内内, ,直角三角形的外心位于直角三角形的外心位于直角三角形直角三角形斜边中点斜边中点, ,钝角三角形的外心位于三角形钝角三角形的外心位于三角形外外. .第21页/共32
11、页5 5、三角形的外心到三边的距离相等、三角形的外心到三边的距离相等 ( )2 2、三角形有且只有一个外接圆、三角形有且只有一个外接圆 ( )3 3、任意一个圆有一个内接三角形,、任意一个圆有一个内接三角形, 并且只有一个内接三角形并且只有一个内接三角形 ( )4 4、三角形的外心就是这个三角形任意两、三角形的外心就是这个三角形任意两边边 垂直平分线的交点垂直平分线的交点 ( )第22页/共32页第23页/共32页思考:思考:过任意四个点是不是一定可以作一个圆过任意四个点是不是一定可以作一个圆? ?请举例说明请举例说明. . 不一定不一定1.1.四点在一条直线上不能作圆;四点在一条直线上不能作
12、圆;3.3.四点中任意三点不在一条直线可能作圆也可能四点中任意三点不在一条直线可能作圆也可能作不出一个圆作不出一个圆. .ABCDABCDABCDABCD2.2.三点在同一直线上三点在同一直线上, ,另一点不在这条直线上不另一点不在这条直线上不能作圆能作圆; ;第24页/共32页 经过经过三个三个已知点已知点A,B,C能确定一个圆吗?能确定一个圆吗?ABC过如下三点能不能做圆? 为什么?第25页/共32页 经过经过三个三个已知点已知点A,B,C能确定一个圆吗?能确定一个圆吗?如图,假设过同一条直线如图,假设过同一条直线l l上三点上三点A A、B B、C C可以作一个圆,设这个圆可以作一个圆,
13、设这个圆的圆心为的圆心为P P,那么点,那么点P P既在线段既在线段ABAB的垂直平分线的垂直平分线l l1 1上,又在线段上,又在线段BCBC的的垂直平分线垂直平分线l l2 2上,即点上,即点P P为为l l1 1与与l l2 2的交点,而的交点,而l l1 1l l,l l2 2l l这与我们这与我们以前学过的以前学过的“过一点有且只有一过一点有且只有一条直线与已知直线垂直条直线与已知直线垂直”相矛盾相矛盾,所以过同一条直线上的三点不,所以过同一条直线上的三点不能作圆能作圆l1l2ABCP第26页/共32页第27页/共32页反证法常用于解决用直接证法不易证明或不反证法常用于解决用直接证法
14、不易证明或不能证明的命题,主要有:能证明的命题,主要有:(1)(1)命题的结论是否定型的;命题的结论是否定型的;(2)(2)命题的结论是无限型的;命题的结论是无限型的;(3)(3)命题的结论是命题的结论是“至多至多”或或“至少至少”型型的的. .第28页/共32页我学会了什么 ?过两点可以作无数个圆过两点可以作无数个圆.圆心在以已知圆心在以已知两点为端点的线段的垂直平分线上两点为端点的线段的垂直平分线上.实际问题实际问题直线公理直线公理过一点可以作无数个圆过一点可以作无数个圆过三点过三点过不在同一条直线上的三点确定一个圆过不在同一条直线上的三点确定一个圆过在同一直线上的三点不能作圆过在同一直线上的三点不能作圆
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度版权许可合同:电影作品国内发行权许可
- 2024年房屋交易流程合同
- 2024年农业发展协议:大棚租赁与种植合作
- 2024年教育培训合同标的及详细规定
- 2024年教育机构教职工劳动合同集
- 2024年新型司机劳动合同
- DB4117T 169.18-2022 动物疫病流行病学调查技术规范 第18部分:猪圆环病毒病
- DB4105T 201-2022 豫谷25号栽培技术规程
- 外贸年度工作计划格式5篇
- 幼儿园中班个人计划5篇
- 数据伦理:科技与道德的交锋课件
- 精神病服药自我管理
- 2024年操作工技能考核考试-干燥工笔试历年真题荟萃含答案
- 2021年公开选拔团委副书记专业知识试题及答案
- 舞蹈专业大学生生涯发展
- 本科生毕业论文写作指导93590课件
- JC/T 547-2017 陶瓷砖胶粘剂
- 网络安全 100mw光伏并网电站电气系统设计
- 《国际中文教育概论》课件全套 第1-12章 从对外汉语教学到国际中文教育- 国际中文教育前瞻
- 招标投标从业人员知识竞赛试题(试题及答案1-200题)
- 第18课《善待同学》课件
评论
0/150
提交评论