内江中考数学加试卷题集_第1页
内江中考数学加试卷题集_第2页
内江中考数学加试卷题集_第3页
内江中考数学加试卷题集_第4页
内江中考数学加试卷题集_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2015年四、填空题(本大题共4小题,每小题6分,共24分)22(6分)(2015内江)在ABC中,B=30,AB=12,AC=6,则BC=6考点:含30度角的直角三角形;勾股定理.分析:由B=30,AB=12,AC=6,利用30所对的直角边等于斜边的一半易得ABC是直角三角形,利用勾股定理求出BC的长解答:解:B=30,AB=12,AC=6,ABC是直角三角形,BC=6,故答案为:6点评:此题考查了含30直角三角形的性质,以及勾股定理,熟练掌握性质及定理是解本题的关键23(6分)(2015内江)在平面直角坐标系xOy中,过点P(0,2)作直线l:y=x+b(b为常数且b2)的垂线,垂足为点Q

2、,则tanOPQ=考点:一次函数图象上点的坐标特征;解直角三角形.分析:设直线l与坐标轴的交点分别为A、B,根据三角形内角和定理求得OAB=OPQ,根据一次函数图象上点的坐标特征求得tanOAB=,进而就可求得解答:解:如图,设直线l与坐标轴的交点分别为A、B,AOB=PQB=90,ABO=PBQ,OAB=OPQ,由直线的斜率可知:tanOAB=,tanOPQ=;故答案为点评:本题考查了一次函数图象上点的坐标特征,解直角三角形,求得OAB=OPQ是解题的关键24(6分)(2015内江)如图,正方形ABCD的边CD在正方形ECGF的边CE上,O是EG的中点,EGC的平分线GH过点D,交BE于点H

3、,连接OH,FH,EG与FH交于点M,对于下面四个结论:CHBE;HOBG;S正方形ABCD:S正方形ECGF=1:;EM:MG=1:(1+),其中正确结论的序号为考点:四边形综合题.分析:证明BCEDCG,即可证得BEC=DGC,然后根据三角形的内角和定理证得EHG=90,则HGBE,然后证明BGHEGH,则H是BE的中点,则OH是BGE的中位线,根据三角形的中位线定理即可判断根据DHNDGC求得两个三角形的边长的比,则即可判断解答:解:四边形ABCD是正方形,BC=DC,BCE=90,同理可得CE=CG,DCG=90,在BCE和DCG中,BCEDCG,BEC=DGC,EDH=CDG,DGC

4、+CDG=90,EDH+BEC=90,EHD=90,HGBE,则CHBE错误,则故错误;在BGH和EGH中,BGHEGH,BH=EH,又O是EG的中点,HOBG,故正确;设EC和OH相交于点N设HN=a,则BC=2a,设正方形ECGF的边长是2b,则NC=b,CD=2a,OHBC,DHNDGC,即,即a2+2abb2=0,解得:a=或a=(舍去),则,则S正方形ABCD:S正方形ECGF=()2=,故错误;EFOH,EFMOMH,=,=故错误故正确的是故答案是:点评:本题考查了正方形的性质,以及全等三角形的判定与性质,相似三角形的判定与性质,正确求得两个三角形的边长的比是解决本题的关键25(6

5、分)(2015内江)已知实数a,b满足:a2+1=,b2+1=,则2015|ab|=1考点:因式分解的应用;零指数幂.分析:由于a2+1=,b2+1=,两式相减可得a2b2=,则有(a+b)(ab)=,分解因式可得a=b,依此可得2015|ab|=20150,再根据零指数幂的计算法则计算即可求解解答:解:a2+1=,b2+1=,两式相减可得a2b2=,(a+b)(ab)=,ab(a+b)+1(ab)=0,ab=0,即a=b,2015|ab|=20150=1故答案为:1点评:考查了因式分解的应用,零指数幂,本题关键是得到a=b五、解答题(本大题共3小题,每小题12分,共36分,解答时应写出必要的

6、文字说明或演算步骤)26(12分)(2015内江)(1)填空:(ab)(a+b)=a2b2;(ab)(a2+ab+b2)=a3b3;(ab)(a3+a2b+ab2+b3)=a4b4(2)猜想:(ab)(an1+an2b+abn2+bn1)=anbn(其中n为正整数,且n2)(3)利用(2)猜想的结论计算:2928+27+2322+2考点:平方差公式.专题:规律型分析:(1)根据平方差公式与多项式乘以多项式的运算法则运算即可;(2)根据(1)的规律可得结果;(3)原式变形后,利用(2)得出的规律计算即可得到结果解答:解:(1)(ab)(a+b)=a2b2;(ab)(a2+ab+b2)=a3+a2

7、b+ab2a2bab2b3=a3b3;(ab)(a3+a2b+ab2+b3)=a4+a3b+a2b2+ab3a3ba2b2ab3b4=a4b4;故答案为:a2b2,a3b3,a4b4;(2)由(1)的规律可得:原式=anbn,故答案为:anbn;(3)2928+27+2322+2=(21)(28+26+24+22+2)=342点评:此题考查了多项式乘以多项式,弄清题中的规律是解本题的关键27(12分)(2015内江)如图,在ACE中,CA=CE,CAE=30,O经过点C,且圆的直径AB在线段AE上(1)试说明CE是O的切线;(2)若ACE中AE边上的高为h,试用含h的代数式表示O的直径AB;(

8、3)设点D是线段AC上任意一点(不含端点),连接OD,当CD+OD的最小值为6时,求O的直径AB的长考点:圆的综合题;线段的性质:两点之间线段最短;等腰三角形的性质;等边三角形的判定与性质;菱形的判定与性质;锐角三角函数的定义;特殊角的三角函数值.专题:综合题分析:(1)连接OC,如图1,要证CE是O的切线,只需证到OCE=90即可;(2)过点C作CHAB于H,连接OC,如图2,在RtOHC中运用三角函数即可解决问题;(3)作OF平分AOC,交O于F,连接AF、CF、DF,如图3,易证四边形AOCF是菱形,根据对称性可得DF=DO过点D作DHOC于H,易得DH=DC,从而有CD+OD=DH+F

9、D根据两点之间线段最短可得:当F、D、H三点共线时,DH+FD(即CD+OD)最小,然后在RtOHF中运用三角函数即可解决问题解答:解:(1)连接OC,如图1,CA=CE,CAE=30,E=CAE=30,COE=2A=60,OCE=90,CE是O的切线;(2)过点C作CHAB于H,连接OC,如图2,由题可得CH=h在RtOHC中,CH=OCsinCOH,h=OCsin60=OC,OC=h,AB=2OC=h;(3)作OF平分AOC,交O于F,连接AF、CF、DF,如图3,则AOF=COF=AOC=(18060)=60OA=OF=OC,AOF、COF是等边三角形,AF=AO=OC=FC,四边形AO

10、CF是菱形,根据对称性可得DF=DO过点D作DHOC于H,OA=OC,OCA=OAC=30,DH=DCsinDCH=DCsin30=DC,CD+OD=DH+FD根据两点之间线段最短可得:当F、D、H三点共线时,DH+FD(即CD+OD)最小,此时FH=OFsinFOH=OF=6,则OF=4,AB=2OF=8当CD+OD的最小值为6时,O的直径AB的长为8点评:本题主要考查了圆周角定理、切线的判定、等腰三角形的性质、三角函数的定义、特殊角的三角函数值、等边三角形的判定与性质、菱形的判定与性质、两点之间线段最短等知识,把CD+OD转化为DH+FD是解决第(3)小题的关键28(12分)(2015内江

11、)如图,抛物线与x轴交于点A(,0)、点B(2,0),与y轴交于点C(0,1),连接BC(1)求抛物线的函数关系式;(2)点N为抛物线上的一个动点,过点N作NPx轴于点P,设点N的横坐标为t(t2),求ABN的面积S与t的函数关系式;(3)若t2且t0时OPNCOB,求点N的坐标考点:二次函数综合题;待定系数法求二次函数解析式;相似三角形的性质.专题:综合题分析:(1)可设抛物线的解析式为y=ax2+bx+c,然后只需运用待定系数法就可解决问题;(2)当t2时,点N在x轴的上方,则NP等于点N的纵坐标,只需求出AB,就可得到S与t的函数关系式;(3)根据相似三角形的性质可得PN=2PO由于PO

12、=,需分t0和0t2两种情况讨论,由PN=2PO得到关于t的方程,解这个方程,就可解决问题解答:解:(1)设抛物线的解析式为y=ax2+bx+c,由题可得:,解得:,抛物线的函数关系式为y=x2+x+1;(2)当t2时,yN0,NP=yN=t2+t+1,S=ABPN=(2+)(t2+t+1)=(t2+t+1)=t2+t+;(3)OPNCOB,=,=,PN=2PO当t0时,PN=yN=t2+t+1,PO=t,t2+t+1=2t,整理得:3t29t2=0,解得:t1=,t2=0,0,t=,此时点N的坐标为(,);当0t2时,PN=yN=t2+t+1,PO=t,t2+t+1=2t,整理得:3t2t2

13、=0,解得:t3=,t4=10,012,t=1,此时点N的坐标为(1,2)综上所述:点N的坐标为(,)或(1,2)点评:本题主要考查了用待定系数法求二次函数的解析式、相似三角形的性质、解一元二次方程等知识,需要注意的是:用点的坐标表示相关线段的长度时,应先用坐标的绝对值表示线段的长度,然后根据坐标的正负去绝对值;解方程后要检验,不符合条件的解要舍去2014年四、填空题(本大题共4小题,每小题6分,满分24分)22(6分)(2014内江)已知+=3,则代数式的值为考点:分式的化简求值分析:根据+=3,得出a+2b=6ab,再把ab=(a+2b)代入要求的代数式即可得出答案解答:解:+=3,a+2

14、b=6ab,ab=(a+2b),把ab代入原式=,故答案为点评:本题考查了分式的化简求值,要注意把ab看作整体,整体代入才可以23(6分)(2014内江)如图,AOB=30,OP平分AOB,PCOB于点C若OC=2,则PC的长是考点:含30度角的直角三角形;勾股定理;矩形的判定与性质专题:计算题分析:延长CP,与OA交于点Q,过P作PDOA,利用角平分线定理得到PD=PC,在直角三角形OQC中,利用锐角三角函数定义求出QC的长,在直角三角形QDP中,利用锐角三角函数定义表示出PQ,由QP+PC=QC,求出PC的长即可解答:解:延长CP,与OA交于点Q,过P作PDOA,OP平分AOB,PDOA,

15、PCOB,PD=PC,在RtQOC中,AOB=30,OC=2,QC=OCtan30=2=,APD=30,在RtQPD中,cos30=,即PQ=DP=PC,QC=PQ+PC,即PC+PC=,解得:PC=故答案为:点评:此题考查了含30度直角三角形的性质,锐角三角函数定义,熟练掌握直角三角形的性质是解本题的关键24(6分)(2014内江)已知实数x、y满足2x3y=4,并且x1,y2,现有k=xy,则k的取值范围是1k3考点:解一元一次不等式专题:计算题分析:先把2x3y=4变形得到y=(2x4),由y2得到(2x4)2,解得x5,所以x的取值范围为1x5,再用x变形k得到k=x+,然后利用一次函

16、数的性质确定k的范围解答:解:2x3y=4,y=(2x4),y2,(2x4)2,解得x5,1x5,k=x(2x4)=x+,当x=1时,k=(1)+=1;当x=5时,k=5+=3,1k3故答案为1k3点评:本题考查了解一元一次不等式:根据不等式的性质解一元一次不等式,基本步骤为:去分母;去括号;移项;合并同类项;化系数为1也考查了代数式的变形和一次函数的性质25(6分)(2014内江)通过对课本中硬币滚动中的数学的学习,我们知道滚动圆滚动的周数取决于滚动圆的圆心运动的路程(如图)在图中,有2014个半径为r的圆紧密排列成一条直线,半径为r的动圆C从图示位置绕这2014个圆排成的图形无滑动地滚动一

17、圈回到原位,则动圆C自身转动的周数为2014考点:弧长的计算;相切两圆的性质;轨迹分析:它从A位置开始,滚过与它相同的其他2014个圆的上部,到达最后位置则该圆共滚过了2014段弧长,其中有2段是半径为2r,圆心角为120度,2012段是半径为2r,圆心角为60度的弧长,所以可求得解答:解:弧长=1314r,又因为是来回所以总路程为:13142=2628所以动圆C自身转动的周数为:2628r2r=1314故答案为:1314点评:本题考查了弧长的计算关键是理解该点所经过的路线三个扇形的弧长五、解答题(本大题共3小题,每小题12分,共36分)26(12分)(2014内江)如图,在ABC中,D是BC

18、边上的点(不与点B、C重合),连结AD问题引入:(1)如图,当点D是BC边上的中点时,SABD:SABC=1:2;当点D是BC边上任意一点时,SABD:SABC=BD:BC(用图中已有线段表示)探索研究:(2)如图,在ABC中,O点是线段AD上一点(不与点A、D重合),连结BO、CO,试猜想SBOC与SABC之比应该等于图中哪两条线段之比,并说明理由拓展应用:(3)如图,O是线段AD上一点(不与点A、D重合),连结BO并延长交AC于点F,连结CO并延长交AB于点E,试猜想+的值,并说明理由考点:相似形综合题分析:(1)根据三角形的面积公式,两三角形等高时,可得两三角形底与面积的关系,可得答案;

19、(2)根据三角形的面积公式,两三角形等底时,可得两三角形的高与面积的关系,可得答案;(3)根据三角形的面积公式,两三角形等底时,可得两三角形的高与面积的关系,再根据分式的加减,可得答案解答:解:(1)如图,当点D是BC边上的中点时,SABD:SABC=1:2;当点D是BC边上任意一点时,SABD:SABC=BD:BC,故答案为:1:2,BD:BC;(2)SBOC:SABC=OD:AD,如图作OEBC与E,作AFBC与F,OEAF,OEDAFD,;(3)+=1,理由如下:由(2)得,+=1点评:本题考查了相似形综合题,利用了等底的三角形面积与高的关系,相似三角形的判定与性质27(12分)(201

20、4内江)某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少

21、?此时,哪种方案对公司更有利?考点:分式方程的应用;一元一次不等式组的应用分析:(1)求单价,总价明显,应根据数量来列等量关系等量关系为:今年的销售数量=去年的销售数量(2)关系式为:99A款汽车总价+B款汽车总价105(3)方案获利相同,说明与所设的未知数无关,让未知数x的系数为0即可;对公司更有利,因为A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,所以要多进B款解答:解:(1)设今年5月份A款汽车每辆售价m万元则:,解得:m=9经检验,m=9是原方程的根且符合题意答:今年5月份A款汽车每辆售价m万元;(2)设购进A款汽车x量则:997.5x+6(15x)105解得:x10因为x的

22、正整数解为3,4,5,6,7,8,9,10,所以共有8种进货方案;(3)设总获利为W元则:W=(97.5)x+(86a)(15x)=(a0.5)x+3015a当a=0.5时,(2)中所有方案获利相同此时,购买A款汽车3辆,B款汽车12辆时对公司更有利点评:本题考查分式方程和一元一次不等式组的综合应用,找到合适的等量关系及不等关系是解决问题的关键28(12分)(2014内江)如图,抛物线y=ax2+bx+c经过A(3.0)、C(0,4),点B在抛物线上,CBx轴,且AB平分CAO(1)求抛物线的解析式;(2)线段AB上有一动点P,过点P作y轴的平行线,交抛物线于点Q,求线段PQ的最大值;(3)抛

23、物线的对称轴上是否存在点M,使ABM是以AB为直角边的直角三角形?如果存在,求出点M的坐标;如果不存在,说明理由考点:二次函数综合题;待定系数法求一次函数解析式;二次函数的最值;待定系数法求二次函数解析式;平行线的性质;等腰三角形的判定;相似三角形的判定与性质专题:压轴题;存在型分析:(1)如图1,易证BC=AC,从而得到点B的坐标,然后运用待定系数法求出二次函数的解析式(2)如图2,运用待定系数法求出直线AB的解析式设点P的横坐标为t,从而可以用t的代数式表示出PQ的长,然后利用二次函数的最值性质就可解决问题(3)由于AB为直角边,分别以BAM=90(如图3)和ABM=90(如图4)进行讨论

24、,通过三角形相似建立等量关系,就可以求出点M的坐标解答:解:(1)如图1,A(3,0),C(0,4),OA=3,OC=4AOC=90,AC=5BCAO,AB平分CAO,CBA=BAO=CABBC=ACBC=5BCAO,BC=5,OC=4,点B的坐标为(5,4)A(3.0)、C(0,4)、B(5,4)在抛物线y=ax2+bx+c上,解得:抛物线的解析式为y=x2+x+4(2)如图2,设直线AB的解析式为y=mx+n,A(3.0)、B(5,4)在直线AB上,解得:直线AB的解析式为y=x+设点P的横坐标为t(3t5),则点Q的横坐标也为tyP=t+,yQ=t2+t+4PQ=yQyP=t2+t+4(

25、t+)=t2+t+4t=t2+=(t22t15)=(t1)216=(t1)2+0,315,当t=1时,PQ取到最大值,最大值为线段PQ的最大值为(3)当BAM=90时,如图3所示抛物线的对称轴为x=xH=xG=xM=yG=+=GH=GHA=GAM=90,MAH=90GAH=AGMAHG=MHA=90,MAH=AGM,AHGMHA=解得:MH=11点M的坐标为(,11)当ABM=90时,如图4所示BDG=90,BD=5=,DG=4=,BG=同理:AG=AGH=MGB,AHG=MBG=90,AGHMGB=解得:MG=MH=MG+GH=+=9点M的坐标为(,9)综上所述:符合要求的点M的坐标为(,9

26、)和(,11)点评:本题考查了平行线的性质、等腰三角形的判定、相似三角形的性质与判定、二次函数的最值等知识,考查了用待定系数法求一次函数及二次函数的解析式,考查了分类讨论的思想,综合性比较强2013年四、填空题(本大题共4小题,每小题6分,共24分)22(6分)(2013内江)在ABC中,已知C=90,sinA+sinB=,则sinAsinB=_23(6分)(2013内江)如图,正六边形硬纸片ABCDEF在桌面上由图1的起始位置沿直线l不滑行地翻滚一周后到图2位置,若正六边形的边长为2cm,则正六边形的中心O运动的路程为_cm24(6分)(2013内江)如图,已知直线l:y=x,过点M(2,0

27、)作x轴的垂线交直线l于点N,过点N作直线l的垂线交x轴于点M1;过点M1作x轴的垂线交直线l于N1,过点N1作直线l的垂线交x轴于点M2,;按此作法继续下去,则点M10的坐标为_25(6分)(2013内江)在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx3k+4与O交于B、C两点,则弦BC的长的最小值为_五、解答题(本大题共3小题,每小题12分,共36分)26(12分)(2013内江)如图,AB是半圆O的直径,点P在BA的延长线上,PD切O于点C,BDPD,垂足为D,连接BC(1)求证:BC平分PDB;(2)求证:BC2=ABBD;(3)若PA=6,PC=6,求B

28、D的长27(12分)(2013内江)如图,在等边ABC中,AB=3,D、E分别是AB、AC上的点,且DEBC,将ADE沿DE翻折,与梯形BCED重叠的部分记作图形L(1)求ABC的面积;(2)设AD=x,图形L的面积为y,求y关于x的函数解析式;(3)已知图形L的顶点均在O上,当图形L的面积最大时,求O的面积28(12分)(2013内江)已知二次函数y=ax2+bx+c(a0)的图象与x轴交于A(x1,0)、B(x2,0)(x1x2)两点,与y轴交于点C,x1,x2是方程x2+4x5=0的两根(1)若抛物线的顶点为D,求SABC:SACD的值;(2)若ADC=90,求二次函数的解析式2012年

29、四、填空题(每小题6分,共24分)22(6分)(2012内江)已知三个数x,y,z,满足,则=_23(6分)(2012内江)已知反比例函数的图象,当x取1,2,3,n时,对应在反比例图象上的点分别为M1,M2,M3,Mn,则=_24(6分)(2012内江)已知ai0(i=1,2,2012)满足,使直线y=aix+i(i=1,2,2012)的图象经过一、二、四象限的ai概率是_25(6分)(2012内江)已知A(1,5),B(3,1)两点,在x轴上取一点M,使AMBM取得最大值时,则M的坐标为_五、解答题(每小题12分,共36分)26(12分)(2012内江)已知ABC为等边三角形,点D为直线B

30、C上的一动点(点D不与B、C重合),以AD为边作菱形ADEF(A、D、E、F按逆时针排列),使DAF=60,连接CF(1)如图1,当点D在边BC上时,求证:BD=CF;AC=CF+CD;(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、CD之间存在的数量关系,并说明理由;(3)如图3,当点D在边BC的延长线上且其他条件不变时,补全图形,并直接写出AC、CF、CD之间存在的数量关系27(12分)(2012内江)如果方程x2+px+q=0的两个根是x1,x2,那么x1+x2=p,x1x2=q,请根据以上结论,解决下列问题:(1)已知关

31、于x的方程x2+mx+n=0,(n0),求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数;(2)已知a、b满足a215a5=0,b215b5=0,求的值;(3)已知a、b、c满足a+b+c=0,abc=16,求正数c的最小值28(12分)(2012内江)如图,已知点A(1,0),B(4,0),点C在y轴的正半轴上,且ACB=90,抛物线y=ax2+bx+c经过A、B、C三点,其顶点为M(1)求抛物线y=ax2+bx+c的解析式;(2)试判断直线CM与以AB为直径的圆的位置关系,并加以证明;(3)在抛物线上是否存在点N,使得SBCN=4?如果存在,那么这样的点有几个?如果不存在,请说明

32、理由2011年四、填空题(本大题共4小题,每小题6分,共24分.请将最简答案直接填在题中横线上.)22(2011内江)若m=,则m52m42011m3的值是_23(2011内江)如图,在ABC中,点D、E分别是边AB、AC的中点,DF过EC的中点G并与BC的延长线交于点F,BE与DE交于点O若ADE的面积为S,则四边形B0GC的面积=_24(2011内江)已知|63m|+(n5)2=3m6,则mn=_25(2011内江)在直角坐标系中,正方形A1B1C1O1、A2B2C2C1、AnBnCnCn1按如图所示的方式放置,其中点A1、A2、A3、An均在一次函数y=kx+b的图象上,点C1、C2、C

33、3、Cn均在x轴上若点B1的坐标为(1,1),点B2的坐标为(3,2),则点An的坐标为_五、解答题(本大题共3小题,每小题12分,共36分解答时必须写ii必要的文字说明、证明过程或推演步骤)26(2011内江)同学们,我们曾经研究过nn的正方形网格,得到了网格中正方形的总数的表达式为12+22+32+n2但n为100时,应如何计算正方形的具体个数呢?下面我们就一起来探究并解决这个问题首先,通过探究我们已经知道01+12+23+(nl)n=n(n+l)(nl)时,我们可以这样做:(1)观察并猜想:12+22=(1+0)1+(1+1)2=l+01+2+12=(1+2)+(01+12)12+22+

34、32=(1+0)1+(1+1)2+(l+2)3=1+01+2+12+3+23=(1+2+3)+(01+12+23)12+22+32+42=(1+0)1+(1+1)2+(l+2)3+_=1+01+2+12+3+23+_=(1+2+3+4)+(_)(2)归纳结论:12+22+32+n2=(1+0)1+(1+1)2+(1+2)3+1+(nl)n=1+01+2+12+3+23+n+(n1)n=(_)+_=_+_=_(3 )实践应用:通过以上探究过程,我们就可以算出当n为100时,正方形网格中正方形的总个数是_27(2011内江)某电脑经销商计划购进一批电脑机箱和液晶显示器,若购电脑机箱10台和液液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液示器5台,共需要资金4120元(1)每台电脑机箱、液晶显示器的进价各是多少元?(2)该经销商购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元该经销商希望销售完这两种商品,所获利润不少于4100元试问:该经销商

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论