排列组合解题技巧PPT学习教案_第1页
排列组合解题技巧PPT学习教案_第2页
排列组合解题技巧PPT学习教案_第3页
排列组合解题技巧PPT学习教案_第4页
排列组合解题技巧PPT学习教案_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、会计学1排列组合解题技巧排列组合解题技巧 解排列问题的常用技巧解排列问题的常用技巧 解排列问题,首先必须认真审题,明确问解排列问题,首先必须认真审题,明确问题是否是排列问题,其次是抓住问题的本质题是否是排列问题,其次是抓住问题的本质特征,灵活运用基本原理和公式进行分析解特征,灵活运用基本原理和公式进行分析解答,同时,还要注意讲究一些基本策略和方答,同时,还要注意讲究一些基本策略和方法技巧,使一些看似复杂的问题迎刃而解。法技巧,使一些看似复杂的问题迎刃而解。 下面就不同的题型介绍几种常用的解题下面就不同的题型介绍几种常用的解题技巧。技巧。第1页/共23页总的原则总的原则合理分类和准确分步合理分类

2、和准确分步 解排列(或)组合问题,应按元素的性质进行分类,事情发生的连续过程分步,做到分类标准明确,分步层次清楚,不重不漏。解法解法1 分析:先安排甲,按照要求对其进行分类,分两类分析:先安排甲,按照要求对其进行分类,分两类:根据分步及分类计数原理,不同的站法共有根据分步及分类计数原理,不同的站法共有例例1 6个同学和个同学和2个老师排成一排照相,个老师排成一排照相, 2个个老师站中间,学生甲不站排头,学生乙不站老师站中间,学生甲不站排头,学生乙不站排尾,共有多少种不同的排法?排尾,共有多少种不同的排法?1)若甲在排尾若甲在排尾 , 则剩下的则剩下的5人可自由安排,有人可自由安排,有 种方法种

3、方法.55A2)若甲在第若甲在第2、3、6、7位,则位,则排尾的排法有排尾的排法有 种,乙位的排种,乙位的排法有法有 种种, 第第2、3、6、7位的排法有位的排法有 种种,根据分步计,根据分步计数原理,不同的站法有数原理,不同的站法有 种。种。14A14A44A441414AAA再安排老师,有再安排老师,有2种方法。种方法。.(1008)(244141455种)AAAA解法解法2 见见幻灯片幻灯片 10第2页/共23页(1)0,1,2,3,4,5可组成多少个无重复数字可组成多少个无重复数字的五位偶数?的五位偶数?个位数为零:个位数为零:个位数为个位数为2或或4:45A341412AAA 341

4、41245AAAA 所以所以练练 习习 1(2)0,1,2,3,4,5可组成多少个无重复数可组成多少个无重复数字且能被五整除的五位数?字且能被五整除的五位数?分类:后两位数字为分类:后两位数字为5或或0:个位数为个位数为0:45A个位数为个位数为5:216341445 AAA3414AA 第3页/共23页(3)0,1,2,3,4,5可组成多少个无重复数可组成多少个无重复数字且大于字且大于31250的五位数?的五位数?分类:分类:(4)31250是由是由0,1,2,3,4,5组成的无重复组成的无重复数字的五位数中从小到大第几个数?数字的五位数中从小到大第几个数?3251231234134512

5、AAAAAA2753254515 AA27512212233445 AAAA方法一:(排除法)方法一:(排除法)方法二:(直接法)方法二:(直接法)第4页/共23页(一)特殊元素的(一)特殊元素的“优先安排法优先安排法” 对于特殊元素的排列组合问题,一般应先考虑特殊对于特殊元素的排列组合问题,一般应先考虑特殊元素,再考虑其它元素。元素,再考虑其它元素。 例例2 用用0,1,2,3,4这五个数,组成没有重复数字这五个数,组成没有重复数字的三位数,其中偶数共有(的三位数,其中偶数共有( )A.24 B.30 C.40 D.60 分析:由于该三位数是偶数,所以末尾数字必须是偶数分析:由于该三位数是偶

6、数,所以末尾数字必须是偶数, 又因为又因为0不能排首位,故不能排首位,故0就是其中的就是其中的“特殊特殊”元素,元素,应优先安排。按应优先安排。按0排在末尾和不排在末尾分为两类;排在末尾和不排在末尾分为两类;1)0排在末尾时,有排在末尾时,有 个;个;2)0不排在末尾时,先用偶数排个位,再排百位,最后不排在末尾时,先用偶数排个位,再排百位,最后排十位有排十位有 个;个;由分类计数原理,共有偶数由分类计数原理,共有偶数 30 个个.2A4111233A A AB解题技巧解题技巧第5页/共23页 (1)0,1,2,3,4,5这六个数字可组成多少个无重这六个数字可组成多少个无重复数字的五位数?复数字

7、的五位数?4515AA (2)0,1,2,3,4,5可组成多少个无重复数可组成多少个无重复数字的五位奇数?字的五位奇数?341413AAA 练练 习习 2第6页/共23页 例例3 用用0,1,2,3,4这五个数,组成没有重复这五个数,组成没有重复数字的三位数,其中数字的三位数,其中1不在个位的数共有不在个位的数共有_种。种。(二)总体淘汰法(二)总体淘汰法(间接法)间接法) 对于含有否定词语的问题,还可以从总体中把不符合要求的减去,此时应注意既不能多减又不能少减。35A 分析分析:五个数组成三位数的全排列有五个数组成三位数的全排列有 个,个,0排在首位的排在首位的有有 个个 ,1排在末尾的有排

8、在末尾的有 ,减掉这两种不合条件的排,减掉这两种不合条件的排法数,再加回百位为法数,再加回百位为0同时个位为同时个位为1的排列数的排列数 (为什么?)(为什么?)故共有故共有 种。种。24A24A35A13A392132435AAA24A24A13A种排法。各不能排某位,则有、个位,个不同元素排若22112mnmnmnAAAbamn第7页/共23页(1)三个男生,四个女生排成一排,甲不)三个男生,四个女生排成一排,甲不在最左,乙不在最右,有几种不同方法?在最左,乙不在最右,有几种不同方法?5566772AAA (2)五人从左到右站成一排,其中甲不站排头,)五人从左到右站成一排,其中甲不站排头,

9、乙不站第二个位置,那么不同的站法有(乙不站第二个位置,那么不同的站法有( ) A.120 B.96 C.78 D.72782334455AAA间接4113433378AA A A种直接练练 习习 3第8页/共23页 (3)0,1,2,3,4,5这六个数字可组成多少个无重复数这六个数字可组成多少个无重复数字且个位数字不是字且个位数字不是4的五位数?的五位数?个)(2344556AAA种)(1008) ! 4! 52! 6(2(4)用)用间接法解例间接法解例1“6个同学和个同学和2个老师排成一排个老师排成一排照相,照相, 2个老师站中间,学生甲不站排头,学生乙个老师站中间,学生甲不站排头,学生乙不

10、站排尾,共有多少种不同的排法?不站排尾,共有多少种不同的排法?”一第9页/共23页(三)相邻问题(三)相邻问题捆绑法捆绑法 对于某几个元素要求相邻的排列问题,可先将相对于某几个元素要求相邻的排列问题,可先将相邻的元素邻的元素“捆绑捆绑”在一起,看作一个在一起,看作一个“大大”的元(组的元(组),与其它元素排列,然后再对相邻的元素(组)内),与其它元素排列,然后再对相邻的元素(组)内部进行排列。部进行排列。例例4 7人站成一排照相,要求甲,乙,丙三人相邻,人站成一排照相,要求甲,乙,丙三人相邻,分别有多少种站法?分别有多少种站法?分析:先将甲,乙,丙三人捆绑在一起看作一个元素分析:先将甲,乙,丙

11、三人捆绑在一起看作一个元素,与其余,与其余4人共有人共有5个元素做全排列,有个元素做全排列,有 种排法,然种排法,然后对甲,乙,丙三人进行全排列。后对甲,乙,丙三人进行全排列。55A由分步计数原理可得:由分步计数原理可得: 种不同排法。种不同排法。5353A A第10页/共23页(四)不相邻问题(四)不相邻问题插空法插空法 对于某几个元素不相邻得排列问题,可先将其它对于某几个元素不相邻得排列问题,可先将其它元素排好,然后再将不相邻的元素在已排好的元素元素排好,然后再将不相邻的元素在已排好的元素之间及两端的空隙之间插入即可。之间及两端的空隙之间插入即可。例例5 7人站成一排照相,要求甲,乙,丙三

12、人不相邻人站成一排照相,要求甲,乙,丙三人不相邻,分别有多少种站法?,分别有多少种站法?分析:可先让其余分析:可先让其余4人站好,共有人站好,共有 种排法,再在种排法,再在这这4人之间及两端的人之间及两端的5个个“空隙空隙”中选三个位置让甲中选三个位置让甲、乙、丙插入,则有、乙、丙插入,则有 种方法,这样共有种方法,这样共有 种种不同的排法。不同的排法。44A35A3544AA第11页/共23页(1)三个男生,四个女生排成一排,男生、女)三个男生,四个女生排成一排,男生、女生各站一起,有几种不同方法?生各站一起,有几种不同方法?2三个男生,四个女生排成一排,三个男生,四个女生排成一排,男生之间

13、、男生之间、女生之间不相邻,有几种不同排法?女生之间不相邻,有几种不同排法?捆绑法:捆绑法:443322AAA 4433AA 插空法:插空法:3如果有两个男生、四个女生排成一排,要如果有两个男生、四个女生排成一排,要 求男求男生之间不相邻,有几种不同排法?生之间不相邻,有几种不同排法?2544AA 插空法:插空法:练练 习习 4第12页/共23页例例6 有有4名男生,名男生,3名女生。名女生。3名女生名女生高矮互不等,高矮互不等,将将7名学生排成一行,要求从左到右,女生从矮到高名学生排成一行,要求从左到右,女生从矮到高排列,有多少种排法?排列,有多少种排法?(五)顺序固定问题用(五)顺序固定问

14、题用“除法除法” 对于某几个元素顺序一定的排列问题,可先对于某几个元素顺序一定的排列问题,可先将这几个元素与其它元素一同进行排列,然后用总将这几个元素与其它元素一同进行排列,然后用总的排列数除以这几个元素的全排列数的排列数除以这几个元素的全排列数.所以共有所以共有 种。种。 473377AAA分析:先在分析:先在7个位置上作全排列,有个位置上作全排列,有 种排法。其中种排法。其中3个女生因要求个女生因要求“从矮到高从矮到高”排,只有一种顺序故排,只有一种顺序故 只只对应一种排法,对应一种排法,33A77A第13页/共23页(1) 五人排队,甲在乙前面的排法有几种?五人排队,甲在乙前面的排法有几

15、种?练练 习习 52三个男生,四个女生排成一排,其中三个男生,四个女生排成一排,其中甲、乙、丙甲、乙、丙三人的顺序不变,有几种不同排法?三人的顺序不变,有几种不同排法?473377AAA分析:若不考虑限制条件,则有分析:若不考虑限制条件,则有 种排法,而甲,种排法,而甲,乙之间排法有乙之间排法有 种,故甲在乙前面的排法只有一种种,故甲在乙前面的排法只有一种符合条件,故符合条件,故符合条件的排法有符合条件的排法有 种种.55A22A5522AA35A即第14页/共23页(六)分排问题用(六)分排问题用“直排法直排法” 把把n个元素排成若干排的问题,若没有其他个元素排成若干排的问题,若没有其他的特

16、殊要求,可采用统一排成一排的方法来处理的特殊要求,可采用统一排成一排的方法来处理.例例7 七人坐两排座位,第一排坐七人坐两排座位,第一排坐3人,第二排坐人,第二排坐4人,则有多少种不同的坐法?人,则有多少种不同的坐法? 分析:分析:7个人,可以在前后排随意就坐,再无个人,可以在前后排随意就坐,再无其他限制条件,故两排可看作一排处理,所以其他限制条件,故两排可看作一排处理,所以不同的坐法有不同的坐法有 种种.77A第15页/共23页(1)三个男生,四个女生排成两排,前排三)三个男生,四个女生排成两排,前排三人、后排四人,有几种不同排法?人、后排四人,有几种不同排法?或:七个人可以在前后两排随意就

17、坐,再无其他条件,或:七个人可以在前后两排随意就坐,再无其他条件,所以所以两排可看作一排来处理两排可看作一排来处理不同的坐法有不同的坐法有 种种77A774437AAA (2)八个人排成两排,有几种不同排法?八个人排成两排,有几种不同排法?887A练练 习习 6第16页/共23页(七)实验法(七)实验法 题中附加条件增多,直接解决困难时,用实验逐题中附加条件增多,直接解决困难时,用实验逐步寻求规律有时也是行之有效的方法。步寻求规律有时也是行之有效的方法。 例例8 将数字将数字1,2,3,4填入标号为填入标号为1,2,3,4的的四个方格内,每个方格填四个方格内,每个方格填1个,则每个方格的标号个

18、,则每个方格的标号与所填的数字均不相同的填法种数有(与所填的数字均不相同的填法种数有( )A.6 B.9 C.11 D.23分析:此题考查排列的定义,由于附加条件较多,解法较为困难分析:此题考查排列的定义,由于附加条件较多,解法较为困难,可用实验法逐步解决。,可用实验法逐步解决。第一方格内可填第一方格内可填2或或3或或4。如填。如填2,则第二方格中内可填,则第二方格中内可填1或或3或或4。若第二方格内填若第二方格内填1,则第三方格只能填,则第三方格只能填4,第四方格应填,第四方格应填3。若第二方格内填若第二方格内填3,则第三方格只能填,则第三方格只能填4,第四方格应填,第四方格应填1。同理,若第二方格内填同理,若第二方格内填4,则第三方格只能填,则第三方格只能填1,第四方格应,第四方格应填填3。因而,第一格填。因

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论