版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、-作者xxxx-日期xxxx小学奥数-几何五大模型(鸟头模型).【精品文档】三角形等高模型与鸟头模型模型二 鸟头模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比如图在中,分别是上的点如图 (或在的延长线上,在上如图 2),则 图 图【例 1】 如图在中,分别是上的点,且,平方厘米,求的面积 【解析】 连接,所以,设份,则份,平方厘米,所以份是平方厘米,份就是平方厘米,的面积是平方厘米由此我们得到一个重要的定理,共角定理:共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比 【巩固】如图,三角形中,是的5倍,是
2、的3倍,如果三角形的面积等于1,那么三角形的面积是多少? 【解析】 连接 又,【巩固】如图,三角形ABC被分成了甲(阴影部分)、乙两部分,乙部分面积是甲部分面积的几倍? 【解析】 连接,又,【例 2】 如图在中,在的延长线上,在上,且,平方厘米,求的面积 【解析】 连接, ,所以,设份,则份,平方厘米,所以份是平方厘米,份就是平方厘米,的面积是平方厘米由此我们得到一个重要的定理,共角定理:共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比【例 3】 如图所示,在平行四边形ABCD中,E为AB的中点,三角形AFE(图中阴影部分)的面积为8平方厘米平行四边形的面积是多少平方厘米?【解析
3、】 连接FB三角形AFB面积是三角形CFB面积的2倍,而三角形AFB面积是三角形AEF面积的2倍,所以三角形ABC面积是三角形AEF面积的3倍;又因为平行四边形的面积是三角形ABC面积的2倍,所以平行四边形的面积是三角形AFE面积的倍因此,平行四边形的面积为(平方厘米)【例 4】 已知的面积为平方厘米,求的面积【解析】 ,设份,则份,份,份,份,恰好是平方厘米,所以平方厘米【例 5】 如图,三角形的面积为3平方厘米,其中,三角形的面积是多少?【解析】 由于,所以可以用共角定理,设份,份,则份, 份,由共角定理,设份,恰好是平方厘米,所以份是平方厘米,份就是平方厘米,三角形的面积是平方厘米【例
4、6】 (2007年”走美”五年级初赛试题)如图所示,正方形边长为6厘米,三角形的面积为_平方厘米【解析】 由题意知、,可得根据”共角定理”可得,;而;所以;同理得,;,故(平方厘米)【例 7】 如图,已知三角形面积为,延长至,使;延长至,使;延长至,使,求三角形的面积 【解析】 (法)本题是性质的反复使用连接、,同理可得其它,最后三角形的面积(法)用共角定理在和中,与互补,又,所以同理可得,所以【例 8】 如图,平行四边形,平行四边形的面积是, 求平行四边形与四边形的面积比 【解析】 连接、根据共角定理 在和中,与互补,又,所以同理可得,所以所以【例 9】 如图,四边形的面积是平方米,求四边形
5、的面积 【解析】 连接由共角定理得,即同理,即所以连接,同理可以得到所以平方米【例 10】 如图,将四边形的四条边、分别延长两倍至点、,若四边形的面积为5,则四边形的面积是 【解析】 连接、由于,于是,同理于是再由于,于是,同理于是那么【例 11】 如图,在中,延长至,使,延长至,使,是的中点,若的面积是,则的面积是多少?【解析】 在和中,与互补,又,所以同理可得,所以【例 12】 如图,求【解析】 本题题目本身很简单,但它把本讲的两个重要知识点融合到一起,既可以看作是”当两个三角形有一个角相等或互补时,这两个三角形的面积比等于夹这个角的两边长度的乘积比”的反复运用,也可以看作是找点,最妙的是
6、其中包含了找点的种情况最后求得的面积为【例 13】 如图所示,正方形边长为厘米,是的中点,是的中点,是的中点,三角形的面积是多少平方厘米? 【解析】 连接、因为,根据”当两个三角形有一个角相等或互补时,这两个三角形的面积比等于夹这个角的两边长度的乘积比”,再根据”当两个三角形有一个角相等或互补时,这两个三角形的面积比等于夹这个角的两边长度的乘积比”,得到,所以平方厘米【例 14】 四个面积为的正六边形如图摆放,求阴影三角形的面积 【解析】 如图,将原图扩展成一个大正三角形,则与都是正三角形假设正六边形的边长为为,则与的边长都是,所以大正三角形的边长为,那么它的面积为单位小正三角形面积的49倍而一个正六边形是由6个单位小正三角形组成的,所以一个单位小正三角形的面积为,三角形的面积为由于,所以与三角形的面积之比为同理可知、与三角形的面积之比都为,所以的面积占三角形面积的,所以的面积的面积为【巩固】已知图中每个正六边形的面积都是1,则图中虚线围成的五边形的面积是 【解析】 从图中可以看出,虚线和虚线外的图形都等于两个正六边形的一半,也就是都等于一个正六边形的面积;虚线和虚
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 淮阴师范学院《国际私法》2021-2022学年第一学期期末试卷
- DB4117-T+405-2024金花葵生产技术规程
- DB2104-T 0036-2024塔式起重机安装施工方案编写规范
- 农业科学与农产品质量评价方法考核试卷
- 企业研究院建设任务书
- 智能出行与交通智能化的融合考核试卷
- 玉石与人类情感的联系与灵感考核试卷
- 公共设施管理的养护与保养考核试卷
- 森林土地资源可持续利用和评估考核试卷
- 城市公共艺术馆设施管理考核试卷
- 《世间最美的坟墓》PPT
- 智慧住建信息平台建设方案
- 中国古代儒家思想的发展演变教学设计
- 慢性阻塞性肺疾病(-COPD)的药物治疗及合理用药课件
- 广电全媒体运营知识考试题库(含答案)
- 商业插画设计 02课件
- DB37-T 3799-2019 城镇冬季供热服务规范-(高清版)
- 六年级上册美术课件-10 流动的风景线 |浙美版(2014秋)(共13张PPT)
- 市政工程管理制度4篇
- 丝绸之路-古今中外美术作品赏析高中美术课件
- 五金采购投标文件
评论
0/150
提交评论