磁性纳米材料的特性、发展及其英勇_第1页
磁性纳米材料的特性、发展及其英勇_第2页
磁性纳米材料的特性、发展及其英勇_第3页
磁性纳米材料的特性、发展及其英勇_第4页
磁性纳米材料的特性、发展及其英勇_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、新乡学院毕业论文(设计) 学位申请人姓名姜光明学 号08160101022所在学院名称物理与电子工程系专 业 名 称物理学指导教师姓名程素君指导教师职称教授目录内容摘要3关 键 词3Abstract3Key words3前言41.磁性纳米材料的特性41.1磁性纳米材料的磁学性能41.2磁性纳米材料的表面效应52.磁性纳米材料的分类5 2.1磁性纳米微晶材料6 2.1.1纳米微晶永磁材料6 2.1.2纳米微晶软磁材料6 2.2.磁性纳米颗粒材料6 2.3磁性纳米有序阵列材料7 2.4磁性纳米结构材料73.磁性纳米材料的发展84.磁性纳米材料的应用9 4.1在纳米永磁材料方面的应用15 4.2在纳

2、米软磁材料方面的应用17 4.3在磁记录方面的应用10 4.4在有机金属高分子磁性材料方面的应用10前景展望11参考文献6内容摘要:磁性纳米材料的特性不同于一般的磁性材料,当与磁性相关联的特征物理长度恰好出于纳米量级,以及电子平均自由路程等大致处于1100nm量级,或磁性体的尺寸与这些特征物理长度相当时,就会呈现反常的磁学与电学性质。不同分类的磁性纳米材料有着大不相同的特性。从纳米科技诞生的那一刻起就对人类产生着深远的影响。同时磁性材料一直是国民经济,国防工业的重要支柱与基础,与此同时在信息化高度发展的今天,磁性纳米材料的地位显的更加的重要与不可替代。关 键 词:磁性,纳米,磁性纳米材料,应用

3、Abstract:Characteristics of magnetic nanomaterials is different from the general magnetic materials and magnetic properties associated with the characteristics of the physical length of just for the nanoscale, and the electron mean free path, etc. generally in the 1 100nm orders of magnitude, or mag

4、netic body size and characteristicsphysical length is quite showing the anomalous magnetic and electrical properties. Different classification of magnetic nanomaterials differ materially from those features. The moment of the birth of nanotechnology on humans with far-reaching impact. Magnetic mater

5、ials has been an important pillar and foundation of the national economy, defense industry, at the same time in the development of information technology today, the status of magnetic nanomaterials significantly more important and irreplaceable.Key words:Magnetic ,Nano ,Magnetic nanomaterials,Applic

6、ation前言:在社会发展和科技进步的同时,磁性纳米材料的研究和应用也有了很大的突破。磁性纳米材料在于与磁性相关联的特征物理长度恰好出于纳米量级,例如,磁单畴尺寸,超顺磁性临界尺寸以及电子平均自由路程等大致处于1100nm量级,当磁性体的尺寸与这些特征物理长度相当时,就会呈现反常的磁学与电学性质。当磁性微粒处于单畴尺寸时, 矫顽力将呈现极大值。铁磁材料, 如铁、钻等磁性单畴临界尺寸大约在l0 nm 量级,可以作为高矫顽力的永磁材料和磁记录材料。由于颗粒磁性与其尺寸有关, 如果尺寸进一步减小, 颗粒将在一定的温度范围内呈现出超顺磁性。 利用微粒的这个特性, 人们在开始对镍纳米微粒进行低温磁性研究

7、, 并提出磁宏观量子隧道效应的概念, 随后在60年代末期研制成了磁性液体。80 年代以后, 在理论与实验二方面, 开始研究纳米磁性微粒的磁宏观量子隧道效应,在1988 年首先在Fe/ Cr 多层膜中发现了巨磁电阻效应, 也为磁性纳米材料的研究奠定了更夯实的基础。1 磁性纳米材料的特性磁性纳米材料的特性不同于常规的磁性材料,其原因在于与磁性相关联的特征物理长度恰好出于纳米量级,例如,磁单畴尺寸,超顺磁性临界尺寸,交换作用长度,以及电子平均自由路程等大致处于1100nm量级,当磁性体的尺寸与这些特征物理长度相当时,就会呈现反常的磁学与电学性质。利用这些新特性已涌现出一系列新材料,尤其在信息存储,处

8、理与传输中已成为不可或缺的组成部分,广泛地应用于电信,自动控制,通讯,家用电器等领域,信息化发展的总趋势是向小,轻,薄以及多功能方向进展,因而要求磁性材料向高性能,新功能方向发展。1.1磁性纳米材料的磁学性能依据表述磁性材料的几个基本概念,磁性材料大致分为软磁性和硬磁性材料两大类。软磁性材料可以被很低的外磁场磁化,但当外磁场去除后其剩磁就很低,一般矫顽力Hc在400A/m到0.16A/m之间。粒子软磁性行为在很多利用外磁场响应的相关应用领域十分重要,而硬磁性材料则在外磁场作用后总是表现出很大的剩磁,一般矫顽力Hc在10KA/m到1MA/m之间,其中矫顽力很大的即为永久磁铁,一般可以作为研究体系

9、中的外加磁场。纳米微粒尺寸到一个临界值时,便进入超顺磁状态,矫顽力Hc趋向于0,这可归纳为以下原因:在小尺寸下,超顺磁体的磁化曲线与铁磁体不同,没有磁滞现象。当去掉外磁场后,剩磁很快消失。在普通顺磁体中,单个原子或分子的磁矩独立地沿磁场取向,而超顺磁体以包含大于10个原子的均匀磁化的单畴作为整体协同取向,所以磁化率较一般顺磁体大很多。当纳米粒子小到一定尺寸的时候,比如四氧化三铁粒子大小为十几二十纳米或更小,每一个纳米粒子都相当于一个小的磁畴。当无外加磁场,粒子(磁畴)无序排列,表现为顺次。当施加磁场,粒子按磁场排列,显示出铁磁(但比块体弱)。1.2磁性纳米材料的表面效应 纳米材料由于其组成材料

10、的纳米粒子尺寸小,微粒表面所占有的原子数目远远多于相同质量的非纳米材料粒子表面所占有的原子数目。随着微粒的粒径变小,其表面所占粒子数目呈几何级数增加。单位质量粒子表面积的增大,表面原子数目的剧增,使原子配位数严重不足,同时高表面积带来的高表面能,使粒子表面原子极其活跃,很容易与周围的气体反映,也容易吸附气体。这一现象被称为纳米材料的表面效应。利用这一性质,人们可以在许多方面使用纳米材料来提高材料的利用率和开发纳米材料的新用途,例如,提高催化剂效率。纳米粒子尺寸下降到一定值时,费米能级附近的电子能级由连续能级变为分立能级的现象称为量子尺寸效应。Kuto曾提出公式r=4Ef/2N(其中r为能级间距

11、,Ef为费米能级,N为总原子数)。宏观物质包含无限个原子(即N ),则能级间距r 0,而纳米材料由于所含原子数有限,即N值较小,这就导致r有一定的值,即能级间距发生分裂,能级的平均间距与纳米晶粒中自由电子的总数成反比。纳米材料中处于分立的量子化能级汇总的电子的波动性,将直接导致纳米材料的一系列特殊性能,如特异的化学催化和光催化性能,光学非线性等。2 磁性纳米材料的分类 磁性纳米材料大致可以分为四大类型:一是纳米微晶型,比如磁性纳米微晶永磁材料、磁性纳米微晶软磁材料;二是纳米颗粒型,比如磁记录介质、磁性液体、吸波材料;三是纳米有序阵列型,比如传感器、场致发光;四是纳米结构型,比如人工纳米结构材料

12、和天然纳米结构材料。2.1磁性纳米微晶材料 磁性纳米微晶材料可分为纳米微晶永磁材料和纳米微晶软磁材料。2.1.1纳米微晶永磁材料永磁材料,要求磁性强,保持磁性的能力也强,同时磁性要稳定,不易受外界环境条件的影响。所以永磁材料要具有高的最大磁能积(BH)、高的剩余磁通密度(简称剩磁Br)、和高的矫顽力(Hc),如果要同时满足这三个量对温度等环境条件有较高的稳定性是很困难的,在实际情况中,只能根据不同的需要来选择适当的永磁材料。目前研究较多的是稀土永磁材料,从1967年第一代稀土永磁材料发展至今,纳米级的永磁材料其磁性能更优越,其永磁性能可以随合金的组成、含量和制造工艺等的不同而有明显变化。同时具

13、有较高的热稳定性。随着快淬技术的发展,使一些化合物能以亚稳态形式存在。如果添加某些元素使亚稳相稳定化,使得对稀土永磁的探索不局限于二元系,利用快淬技术制得纳米晶具有较好的热稳定性、耐腐蚀性,适用于微电机等小型异型、尺寸精度要求高的永磁器件。近年来研究主要方向就是是纳米复相稀土永磁材料的研制。2.1.2磁性纳米微晶软磁材料软磁材料经历了晶态非晶态、纳米微晶态的发展历程。纳米微晶金属软磁材料具有:高磁导率、低损耗、高饱和磁化强度等优良性能,己应用于开关电源、变压器、传感器等诸多产品中,可实现器件小型化、轻型化、高频化以及多功能化。近几年发展十分迅速。从软磁材料追求大晶粒尺寸的微结构。1988年新型

14、纳米微晶软磁材料问世均发现了非常优异的软磁特性,于是软磁材料的研制开始进入另一个极端,要求晶粒尺寸要很小,以至达到纳米量级,之后非晶与纳米微晶金属软磁材料逐步成为软磁铁氧体的新的竞争对手,在性能上它远优越于铁氧体,在高技术领域的应用中日益显出其重要性。2.2磁性纳米颗粒材料磁性纳米颗粒材料是最早进入应用的磁性纳米材料,从用途上大体可分为:(1)磁记录介质;(2)磁性液体;(3)磁性药物;(4)吸波材料四类 磁性材料与信息化、自动化等众多行业息息相关,磁记录更是信息工业的主体,磁记录发展的总趋势是大容量、小尺寸 高密度、高速度、低价格,为了提高磁记录密度,磁性颗粒尺寸已由微米、亚微米向纳米尺度晋

15、级。例如钡铁氧体磁粉的尺寸约40nm。由超顺磁性所决定的极限磁记录密度理论值约为6000Gb/in2,对磁性纳米颗粒的研究,除了磁记录工业所需同时还具有基础研究的意义,比如小尺寸效应、宏观量子隧道效应、量子尺寸效应等研究都以纳米颗粒为研究对象。在磁性药物方面磁性纳米颗粒作为靶向药物、磁控造影剂、细胞分离等医疗应用也是生物医学的热门研究课题,有些实验已进入临床试验阶段。2.3磁性纳米有序阵列材料纳米有序阵列是磁记录材料进一步的发展方向“量子磁盘”采用化学电镀,电子刻蚀等工艺将磁性纳米线进行有序排列。利用磁纳米线形状各向异性的存储特性当线间距为10nm时,记录密度预计可达到400Gh/in,相当于

16、可存储20万部三国演义,正向着商品化方向发展,纳米有序阵列在传感器,场致发光等方面也具有相当广泛的用途。2.4磁性纳米结构材料纳米结构材料可分为两大类:(1)人工纳米结构材料:薄膜、颗粒膜、多层膜、隧道结等;(2)天然纳米结构材料:如钙钛矿型化台物等。在隧道结、多层膜等纳米结构中,当薄膜的厚度及间距与电子平均自由程相差不大时,电子的输运特性与电子的自旋取向有关,从而呈现出巨磁电阻效应。巨磁电阻效应是基于电子在磁性纳米结构中与自旋相关的输运特性,开拓了新的应用领域。近几年来,磁盘记录密度突飞猛进现已超过65Gb/in2,最主要的原因就是应用了巨磁电阻效应来读出磁头,巨磁电阻效应读出磁头在商业应用

17、方面的年产值已逾100亿美元。磁随机存储器(MRAM)已经进入商品化生产。磁电子纳米结构器件是20世纪末最具有影响力的重大成果。除巨磁电阻效应读出磁头、MRAM(磁随机存储器)、磁传感器外,全金属晶体管等新型器件的研究也已经就绪。20世纪90年代,人们在钙钛矿型化合物等天然纳米结构材料中发现了巨磁电阻效应,继而又发现巨磁熵变、巨磁致伸缩效应等。从基础研究的角度,钙钛矿型化合物属于强关联体系,很多的基本问题尚未搞清楚,从应用研究的角度,钙钛矿型化合物是一类重要的高温超导氧化物。它在磁学与输运性质方向更是有着不可估量的前景。3 磁性纳米材料的发展社会的发展和科学的进步促使人们在磁性纳米材料的研究和

18、应用领域也有了很大进展。人类有意识地制备磁性纳米微粒,可以追溯到上世纪60年代。然而大自然界中的磁性纳米微粒确早已经存在,例如千里返航的鸽子,高智商的海豚等都有由磁性纳米微粒所构成的磁罗盘,关于磁性微粒与生物体神经网络之间的联系,至今仍然没有成型的研究成果。磁性是物质的基本属性之一。从公元前四世纪开始人们发现了天然的磁石(磁铁矿Fe3O4),我们的先辈们并用磁石和钢针制成了指南针,并将它用于航海和军事。1788年,库仑( Co ulomb) 把二点电荷之间的相互作用力规律推广到二磁极之间的相互作用上。1820年,丹麦物理学家奥斯特(Oersted)发现了电流的磁效应;同一年间法国物理学家安培(

19、Ampere)提出了分子电流假说,他认为物质磁性起源于分子间的电流。1831年,英国科学家法拉第(Faraday)提出了电磁感应定律,并阐明磁场的概念,为统一电磁理论奠定了基础。1834年,俄国物理学家楞茨(Lenz),发现了感应电流方向和磁场变化关系的楞次定律。随后英国物理学家麦克斯韦(Maxwell)将电和磁现象联系起来,系统地提出了关于电磁场的麦克斯韦方程组,并预言了电磁波的存在。1888年德国物理学家赫兹(Hertz)确切地证实了麦克斯韦的电磁场理论的正确性。十九世纪末随着铁磁性和抗磁性的发现,法国物理学家居里(Curie)深入考察了抗磁性和顺磁性和温度之间的关系,并建立了顺磁磁化率与

20、温度成反比的实验规律居里定律。居里的研究成果推动了固体磁性理论的蓬勃发展。1905年朗之万(Langevin)将经典统计力学应用到一定大小的原子磁矩系统中,推导出了居里定律。1907年,法国的物理学家外斯(Weiss)提出了铁磁体内部存在分子场和磁畴的假设,在理论上定性地解释了铁磁体的磁性。在上世纪20年代之后,随着量子力学的发展,人们对物质磁性的认识也进入了新的阶段。人们认识到磁性的本质属于量子力学效应。运用量子力学,海森堡(Heisenberg)对氦原子,海脱勒和伦敦( Heitler and London)对氢分子进行了研究,他们发现了原子和分子中电子之间的静电相互作用所产生的交换效应。

21、海森堡提出了关于绝缘磁性物质的局域自旋模型海森堡模型,布洛赫( Bloch)和斯通纳(Stoner)提出了关于铁磁金属或合金的巡游电子模型。赫伯德(Hubbard)考虑电子间的关联效应,提出了Hubbard模型。朗道(Landau)和尼尔(Neel)预言了反铁磁现象,尼尔提出了关于亚铁磁体的理论。4 磁性纳米材料的应用磁性纳米材料具有多种特殊的纳米磁特性,在传统技术、高新技术、工农业生产和国防科研以及社会生活的各个方面有着重要的应用。4.1在纳米永磁材料方面的应用永磁材料要求磁性强,保持磁性的能力强,磁性稳定,即要求永磁材料具有高的最大磁能积(BH)max、高的剩余磁通密度(Br)和高的矫顽力

22、(HO),而且还需要这三个量对温度等环境因素具有较高的的稳定性。在实际情况中,要求三个量都较高是很困难的,我们只能根据不同的需要来选择适当的永磁材料。就目前稀土是研究最多也是最主要的永磁材料,它具有高的原子磁矩、高的磁晶各向异性、高的磁致伸缩系数、高的磁光效应及低的磁转变点(居里点)。由高的原子磁矩可以得到高的剩磁,由高的磁晶各向异性可以得到高的矫顽力。钴和铁的居里点也很高,选取适当的稀土元素和Co或Fe的金属间化合物,可以制较好的永磁材料。磁性纳米材料的特点之一是在一定条件下可得到单磁畴结构,并可明显提高永磁材料的矫顽力和永磁性能。4.2在纳米软磁材料方面的应用软磁材料要求有高的起始磁导率和

23、饱和磁化强度,低的矫顽力、磁损耗和宽频带等。通过研究发现,只要选择适当的化学组分和工艺条件,可以分别制成性能优越的纳米永磁材料和纳米软磁材料。比如采用射频溅射法制成的纳米晶磁膜,己被制成高起始磁导率、高饱和磁通密度、高居里温度的纳米软磁材料。近几年纳米磁性材料正向高频、多功能的方向发展,其应用领域将遍及软磁材料应用的各个方面,例如高频变压器、功率变压器、可饱和电流器、扼流圈、互感器等。纳米微晶软磁材料在高频场中的巨磁阻抗效应在磁敏感元件的应用也极具潜力。4.3在磁记录方面的应用在信息化发达的今天,离不开磁信息材料和技术,而磁性纳米材料更是重中之重,电子计算机中的磁自旋随机存储器,磁电子学中的自

24、旋阀磁读出头和自旋阀三极管等都是应用多层纳米磁膜研制成的。在Co铁氧体和磁性金属的复合磁记录材料的研究中取得了高饱和磁化强度(Ms)和高矫顽力(HO)同时兼备的良好效果。4.4在有机金属高分子磁性材料方面的应用有机高分子磁学,打破了磁体只有与3d和4f电子金属有关,而与有机高分子无关的传统看法。有机金属高分子磁性材料分为复合型和结构型两大类:前者是在合成树脂中添加铁氧体或稀土类磁粉,经成型,磁化成塑料磁性材料。后者是在不加磁粉的情况下,其自身具有本征磁性的结构金属有机磁性材料。这方面的工作在理论和应用方面均有重要的意义。前景展望:磁性纳米材料在科技和生活各个方面的拥有很大的开发前景,在不久的将

25、来,开发出更多具有特殊功能的磁性纳米材料是毫无疑义的,对经济社会的发展, 特别是对高新技术的发展, 也会有重要的作用。参考文献:1.李国栋.磁的世界M、长沙,湖南教育出版社,1994:1122都有为.物理.2000.293.田民波、磁性材料M、北京,清华大学出版社.20014.Hadjipanayis G C,et al.JMMM 1999,200,373/3915. 王瑞金.磁流体技术的应用与发展J.新技术新工艺,2001,(10):15-18. 6.SagawaM,FujimureSandTogawaMetal.,Newmaterialforpermanentmagnetsonabaseo

26、fNdandFeJ.J.Appl.Phys.,1984,55:2083-2088. 7.王育德.纳米微晶巨磁阻抗元器件21世纪的传感器J.汽车电器,2000,2:22-25.8.白木,周杰,纳米磁性材料及其应用J信息记录材料,2002,3(2):37-39.9.姬海宁,兰中文,王豪才等,纳米技术在磁性材料中的应用J.磁性材料及器件,2002,33(2):25-28.10.张立德,牟季美,纳米材料与纳米结构M.北京:科学出版社,2001.11.阂娜,陈慧敏,李四年等.碳纳米管在磁性材料中的应用J.湖北工业学院报,2004,19(1):35-37.12.王美婷,尹衍升,许凤秀等,磁性纳米流体制备方

27、法及其应用简介J.山东轻工业学院学报, 2004, 18( 4) : 58- 61.13.张修华,王升,氮化铁的制备及其在磁记录和磁流体中的应用进展J.湖北大学学报,2003,25(3):229-231.14.张明,王少青,稀土纳米材料的研究现状J.内蒙古石化工,2005(6):3-4.15.符秀丽, 李培刚,大规模制备纳米线阵列及其磁学性质J.物理学报,2005,54(5):1694-1696.16.王慧荣, 李代禧,刘珊林等,纳米超顺磁性铁氧体的制备与研究J.材料导报,2007,21(5):32-35.17.赵强, 庞小峰,纳米磁性生物材料研究进展及其应用J.原子与分子物理学报,2005,

28、22(2):222-225.22永磁交流伺服电机位置反馈传感器检测相位与电机磁极相位的对齐方式2008-11-07来源:internet浏览:504 主流的伺服电机位置反馈元件包括增量式编码器,绝对式编码器,正余弦编码器,旋转变压器等。为支持永磁交流伺服驱动的矢量控制,这些位置反馈元件就必须能够为伺服驱动器提供永磁交流伺服电机的永磁体磁极相位,或曰电机电角度信息,为此当位置反馈元件与电机完成定位安装时,就有必要调整好位置反馈元件的角度检测相位与电机电角度相位之间的相互关系,这种调整可以称作电角度相位初始化,也可以称作编码器零位调整或对齐。下面列出了采用增量式编码器,绝对式编码器,正余弦编码器,

29、旋转变压器等位置反馈元件的永磁交流伺服电机的传感器检测相位与电机电角度相位的对齐方式。增量式编码器的相位对齐方式 在此讨论中,增量式编码器的输出信号为方波信号,又可以分为带换相信号的增量式编码器和普通的增量式编码器,普通的增量式编码器具备两相正交方波脉冲输出信号A和B,以及零位信号Z;带换相信号的增量式编码器除具备ABZ输出信号外,还具备互差120度的电子换相信号UVW,UVW各自的每转周期数与电机转子的磁极对数一致。带换相信号的增量式编码器的UVW电子换相信号的相位与转子磁极相位,或曰电角度相位之间的对齐方法如下: 1.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出,将电

30、机轴定向至一个平衡位置; 2.用示波器观察编码器的U相信号和Z信号; 3.调整编码器转轴与电机轴的相对位置; 4.一边调整,一边观察编码器U相信号跳变沿,和Z信号,直到Z信号稳定在高电平上(在此默认Z信号的常态为低电平),锁定编码器与电机的相对位置关系; 5.来回扭转电机轴,撒手后,若电机轴每次自由回复到平衡位置时,Z信号都能稳定在高电平上,则对齐有效。 撤掉直流电源后,验证如下: 1.用示波器观察编码器的U相信号和电机的UV线反电势波形; 2.转动电机轴,编码器的U相信号上升沿与电机的UV线反电势波形由低到高的过零点重合,编码器的Z信号也出现在这个过零点上。 上述验证方法,也可以用作对齐方法

31、。 需要注意的是,此时增量式编码器的U相信号的相位零点即与电机UV线反电势的相位零点对齐,由于电机的U相反电势,与UV线反电势之间相差30度,因而这样对齐后,增量式编码器的U相信号的相位零点与电机U相反电势的-30度相位点对齐,而电机电角度相位与U相反电势波形的相位一致,所以此时增量式编码器的U相信号的相位零点与电机电角度相位的-30度点对齐。 有些伺服企业习惯于将编码器的U相信号零点与电机电角度的零点直接对齐,为达到此目的,可以: 1.用3个阻值相等的电阻接成星型,然后将星型连接的3个电阻分别接入电机的UVW三相绕组引线; 2.以示波器观察电机U相输入与星型电阻的中点,就可以近似得到电机的U

32、相反电势波形; 3.依据操作的方便程度,调整编码器转轴与电机轴的相对位置,或者编码器外壳与电机外壳的相对位置; 4.一边调整,一边观察编码器的U相信号上升沿和电机U相反电势波形由低到高的过零点,最终使上升沿和过零点重合,锁定编码器与电机的相对位置关系,完成对齐。 由于普通增量式编码器不具备UVW相位信息,而Z信号也只能反映一圈内的一个点位,不具备直接的相位对齐潜力,因而不作为本讨论的话题。 绝对式编码器的相位对齐方式 绝对式编码器的相位对齐对于单圈和多圈而言,差别不大,其实都是在一圈内对齐编码器的检测相位与电机电角度的相位。早期的绝对式编码器会以单独的引脚给出单圈相位的最高位的电平,利用此电平

33、的0和1的翻转,也可以实现编码器和电机的相位对齐,方法如下: 1.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出,将电机轴定向至一个平衡位置; 2.用示波器观察绝对编码器的最高计数位电平信号; 3.调整编码器转轴与电机轴的相对位置; 4.一边调整,一边观察最高计数位信号的跳变沿,直到跳变沿准确出现在电机轴的定向平衡位置处,锁定编码器与电机的相对位置关系; 5.来回扭转电机轴,撒手后,若电机轴每次自由回复到平衡位置时,跳变沿都能准确复现,则对齐有效。 这类绝对式编码器目前已经被采用EnDAT,BiSS,Hyperface等串行协议,以及日系专用串行协议的新型绝对式编码器广泛取

34、代,因而最高位信号就不符存在了,此时对齐编码器和电机相位的方法也有所变化,其中一种非常实用的方法是利用编码器内部的EEPROM,存储编码器随机安装在电机轴上后实测的相位,具体方法如下: 1.将编码器随机安装在电机上,即固结编码器转轴与电机轴,以及编码器外壳与电机外壳; 2.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出,将电机轴定向至一个平衡位置; 3.用伺服驱动器读取绝对编码器的单圈位置值,并存入编码器内部记录电机电角度初始相位的EEPROM中; 4.对齐过程结束。 由于此时电机轴已定向于电角度相位的-30度方向,因此存入的编码器内部EEPROM中的位置检测值就对应电机电

35、角度的-30度相位。此后,驱动器将任意时刻的单圈位置检测数据与这个存储值做差,并根据电机极对数进行必要的换算,再加上-30度,就可以得到该时刻的电机电角度相位。这种对齐方式需要编码器和伺服驱动器的支持和配合方能实现,日系伺服的编码器相位之所以不便于最终用户直接调整的根本原因就在于不肯向用户提供这种对齐方式的功能界面和操作方法。这种对齐方法的一大好处是,只需向电机绕组提供确定相序和方向的转子定向电流,无需调整编码器和电机轴之间的角度关系,因而编码器可以以任意初始角度直接安装在电机上,且无需精细,甚至简单的调整过程,操作简单,工艺性好。 如果绝对式编码器既没有可供使用的EEPROM,又没有可供检测

36、的最高计数位引脚,则对齐方法会相对复杂。如果驱动器支持单圈绝对位置信息的读出和显示,则可以考虑: 1.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出,将电机轴定向至一个平衡位置; 2.利用伺服驱动器读取并显示绝对编码器的单圈位置值; 3.调整编码器转轴与电机轴的相对位置; 4.经过上述调整,使显示的单圈绝对位置值充分接近根据电机的极对数折算出来的电机-30度电角度所应对应的单圈绝对位置点,锁定编码器与电机的相对位置关系; 5.来回扭转电机轴,撒手后,若电机轴每次自由回复到平衡位置时,上述折算位置点都能准确复现,则对齐有效。 如果用户连绝对值信息都无法获得,那么就只能借助原厂

37、的专用工装,一边检测绝对位置检测值,一边检测电机电角度相位,利用工装,调整编码器和电机的相对角位置关系,将编码器相位与电机电角度相位相互对齐,然后再锁定。这样一来,用户就更加无从自行解决编码器的相位对齐问题了。 个人推荐采用在EEPROM中存储初始安装位置的方法,简单,实用,适应性好,便于向用户开放,以便用户自行安装编码器,并完成电机电角度的相位整定。 正余弦编码器的相位对齐方式 普通的正余弦编码器具备一对正交的sin,cos 1Vp-p信号,相当于方波信号的增量式编码器的AB正交信号,每圈会重复许许多多个信号周期,比如2048等;以及一个窄幅的对称三角波Index信号,相当于增量式编码器的Z

38、信号,一圈一般出现一个;这种正余弦编码器实质上也是一种增量式编码器。另一种正余弦编码器除了具备上述正交的sin、cos信号外,还具备一对一圈只出现一个信号周期的相互正交的1Vp-p的正弦型C、D信号,如果以C信号为sin,则D信号为cos,通过sin、cos信号的高倍率细分技术,不仅可以使正余弦编码器获得比原始信号周期更为细密的名义检测分辨率,比如2048线的正余弦编码器经2048细分后,就可以达到每转400多万线的名义检测分辨率,当前很多欧美伺服厂家都提供这类高分辨率的伺服系统,而国内厂家尚不多见;此外带C、D信号的正余弦编码器的C、D信号经过细分后,还可以提供较高的每转绝对位置信息,比如每

39、转2048个绝对位置,因此带C、D信号的正余弦编码器可以视作一种模拟式的单圈绝对编码器。 采用这种编码器的伺服电机的初始电角度相位对齐方式如下: 1.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出,将电机轴定向至一个平衡位置; 2.用示波器观察正余弦编码器的C信号波形; 3.调整编码器转轴与电机轴的相对位置; 4.一边调整,一边观察C信号波形,直到由低到高的过零点准确出现在电机轴的定向平衡位置处,锁定编码器与电机的相对位置关系; 5.来回扭转电机轴,撒手后,若电机轴每次自由回复到平衡位置时,过零点都能准确复现,则对齐有效。 撤掉直流电源后,验证如下: 1.用示波器观察编码器

40、的C相信号和电机的UV线反电势波形; 2.转动电机轴,编码器的C相信号由低到高的过零点与电机的UV线反电势波形由低到高的过零点重合。 这种验证方法,也可以用作对齐方法。 此时C信号的过零点与电机电角度相位的-30度点对齐。如果想直接和电机电角度的0度点对齐,可以考虑: 1.用3个阻值相等的电阻接成星型,然后将星型连接的3个电阻分别接入电机的UVW三相绕组引线; 2.以示波器观察电机U相输入与星型电阻的中点,就可以近似得到电机的U相反电势波形; 3.调整编码器转轴与电机轴的相对位置; 4.一边调整,一边观察编码器的C相信号由低到高的过零点和电机U相反电势波形由低到高的过零点,最终使2个过零点重合

41、,锁定编码器与电机的相对位置关系,完成对齐。 由于普通正余弦编码器不具备一圈之内的相位信息,而Index信号也只能反映一圈内的一个点位,不具备直接的相位对齐潜力,因而在此也不作为讨论的话题。 如果可接入正余弦编码器的伺服驱动器能够为用户提供从C、D中获取的单圈绝对位置信息,则可以考虑: 1.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出,将电机轴定向至一个平衡位置; 2.利用伺服驱动器读取并显示从C、D信号中获取的单圈绝对位置信息; 3.调整旋变轴与电机轴的相对位置; 4.经过上述调整,使显示的绝对位置值充分接近根据电机的极对数折算出来的电机-30度电角度所应对应的绝对位置

42、点,锁定编码器与电机的相对位置关系; 5.来回扭转电机轴,撒手后,若电机轴每次自由回复到平衡位置时,上述折算绝对位置点都能准确复现,则对齐有效。 此后可以在撤掉直流电源后,得到与前面基本相同的对齐验证效果: 1.用示波器观察正余弦编码器的C相信号和电机的UV线反电势波形; 2.转动电机轴,验证编码器的C相信号由低到高的过零点与电机的UV线反电势波形由低到高的过零点重合。 如果利用驱动器内部的EEPROM等非易失性存储器,也可以存储正余弦编码器随机安装在电机轴上后实测的相位,具体方法如下: 1.将正余弦随机安装在电机上,即固结编码器转轴与电机轴,以及编码器外壳与电机外壳; 2.用一个直流电源给电

43、机的UV绕组通以小于额定电流的直流电,U入,V出,将电机轴定向至一个平衡位置; 3.用伺服驱动器读取由C、D信号解析出来的单圈绝对位置值,并存入驱动器内部记录电机电角度初始安装相位的EEPROM等非易失性存储器中; 4.对齐过程结束。 由于此时电机轴已定向于电角度相位的-30度方向,因此存入的驱动器内部EEPROM等非易失性存储器中的位置检测值就对应电机电角度的-30度相位。此后,驱动器将任意时刻由编码器解析出来的与电角度相关的单圈绝对位置值与这个存储值做差,并根据电机极对数进行必要的换算,再加上-30度,就可以得到该时刻的电机电角度相位。 这种对齐方式需要伺服驱动器的在国内和操作上予以支持和

44、配合方能实现,而且由于记录电机电角度初始相位的EEPROM等非易失性存储器位于伺服驱动器中,因此一旦对齐后,电机就和驱动器事实上绑定了,如果需要更换电机、正余弦编码器、或者驱动器,都需要重新进行初始安装相位的对齐操作,并重新绑定电机和驱动器的配套关系。 旋转变压器的相位对齐方式 旋转变压器简称旋变,是由经过特殊电磁设计的高性能硅钢叠片和漆包线构成的,相比于采用光电技术的编码器而言,具有耐热,耐振。耐冲击,耐油污,甚至耐腐蚀等恶劣工作环境的适应能力,因而为武器系统等工况恶劣的应用广泛采用,一对极(单速)的旋变可以视作一种单圈绝对式反馈系统,应用也最为广泛,因而在此仅以单速旋变为讨论对象,多速旋变

45、与伺服电机配套,个人认为其极对数最好采用电机极对数的约数,一便于电机度的对应和极对数分解。 旋变的信号引线一般为6根,分为3组,分别对应一个激励线圈,和2个正交的感应线圈,激励线圈接受输入的正弦型激励信号,感应线圈依据旋变转定子的相互角位置关系,感应出来具有SIN和COS包络的检测信号。旋变SIN和COS输出信号是根据转定子之间的角度对激励正弦信号的调制结果,如果激励信号是sint,转定子之间的角度为,则SIN信号为sintsin,则COS信号为sintcos,根据SIN,COS信号和原始的激励信号,通过必要的检测电路,就可以获得较高分辨率的位置检测结果,目前商用旋变系统的检测分辨率可以达到每

46、圈2的12次方,即4096,而科学研究和航空航天系统甚至可以达到2的20次方以上,不过体积和成本也都非常可观。 商用旋变与伺服电机电角度相位的对齐方法如下: 1.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出; 2.然后用示波器观察旋变的SIN线圈的信号引线输出; 3.依据操作的方便程度,调整电机轴上的旋变转子与电机轴的相对位置,或者旋变定子与电机外壳的相对位置; 4.一边调整,一边观察旋变SIN信号的包络,一直调整到信号包络的幅值完全归零,锁定旋变; 5.来回扭转电机轴,撒手后,若电机轴每次自由回复到平衡位置时,信号包络的幅值过零点都能准确复现,则对齐有效 。 撤掉直流电

47、源,进行对齐验证: 1.用示波器观察旋变的SIN信号和电机的UV线反电势波形; 2.转动电机轴,验证旋变的SIN信号包络过零点与电机的UV线反电势波形由低到高的过零点重合。 这个验证方法,也可以用作对齐方法。 此时SIN信号包络的过零点与电机电角度相位的-30度点对齐。如果想直接和电机电角度的0度点对齐,可以考虑: 1.用3个阻值相等的电阻接成星型,然后将星型连接的3个电阻分别接入电机的UVW三相绕组引线; 2.以示波器观察电机U相输入与星型电阻的中点,就可以近似得到电机的U相反电势波形; 3.依据操作的方便程度,调整编码器转轴与电机轴的相对位置,或者编码器外壳与电机外壳的相对位置; 4.一边调整,一边观察旋变的SIN信号包络的过零点和电机U相反电势波形由低到高的过零点,最终使这2个过零点重合,锁定编码器与电机的相对位置关系,完成对齐。 需要指出的是,在上述操作中需有效区分旋变的SIN包络信号中的正半周和负半周。由于SIN信号是以转定子之间的角度为的sin值对激励信号的调制结果,因而与sin的正半周对应的SIN信号包络中,被调制的激励信号与原始激励信号同相,而与sin的负半周对应的SIN信号包络中,被调制的激励信号与原始激励信号反相,据此可以区别和判断旋变输出的SIN包络信号波

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论