下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、小学数学思想方法的梳理(一)王永春(课程教材研究所)数学思想和数学方法既有区别又有密切联系。数学思想的理论和抽象程度要高一些,而数学方法的实践性更强一些。人们实现数学思想往往要靠一定的数学方法;而人们选择数学方法, 又要以一定的数学思想为依据。因此,二者是有密切联系的。我们把二者合称为数学思想方法。数学思想方法是数学的灵魂,那么,要想学好数学、用好数学,就要深入到数学的“灵魂深处”。数学课程标准在总体目标中明确提出:“学生能获得适应未来的社会生活和进一步发展所必需的重要数学知识以及 基本的数学思想方法和必要的应用技能。”这一总体目标贯穿于小学和初中,这充分说明了数学思想方法的重要性。在小学阶
2、段有意识地向学生渗透一些基本的数学思想方法可以加深学生对数学概念、公式、法则、定律的理解,提高学生解决问题的能 力和思维能力,也是小学数学进行素质教育的真正内涵之所在。同时,也能为初中数学思想方法的学习打下较好的基础。在小 学阶段,数学思想方法主要有符号化思想、化归思想、类比思想、归纳思想、分类思想、方程思想、集合思想、函数思想、一 一对应思想、模型思想、数性结合思想、演绎推理思想、变换思想、统计与概率思想等等。为了使广大小学数学教师在教学中能很好地渗透这些数学思想方法,笔者把这些思想方法比较系统地进行概括和梳理, 明晰这些思想方法的概念,整理它们在小学数学各个知识点中的应用,并就如何教学提出
3、一些建议。一、符号化思想1、符号化思想的概念。数学符号是数学的语言,数学世界时一个符号化的世界,数学作为人们进行表示、计算、推理和解决问题的工具,符 号起到了非常重要的作用:因为数学有了符号,才使得数学具有简明、抽象、清晰、准确等特点,同时也促进了数学的普及和 发展;国际通用的数学符号的使用,使数学成为国际化的语言。符号化思想是一般化的思想方法,具有普遍的意义。2、如何理解符号化思想。数学课程标准比较重视培养学生的符号意识,并把符号意识作为数学与代数的内容之一给出了诠释。那么,在小学 阶段,如何理解这一重要思想呢下面结合案例做简要解析。第一、从具体情境中抽象出数学量关系和变化规律、从特殊到一般
4、的探索和归纳过程。如通过几组具体的两个数相加, 交换加数的位置和不变,归纳出加法交换律,并用符号表示:a+b=b+a。再如在长方形上拼摆单位面积的小正方形,探索并归纳出长方形的面积公式,并有符号表示:s=ab。这是一个符号化的过程,同时也是一个模型化的过程。第二、理解并运用符号表示数量关系和变化规律。这是一个从一般到特殊、从理论到实践的过程。包括用关系式、表格和图像表示情境中数量间的关系。如假设一个正方形的边长是a,那么4a就表示该正方形的周长,a2表示该正方形的面积。这同样是一个符号化的过程,同时也是一个解释和应用模型的过程。第三、会进行符号间的转换。数量间的关系一旦确定,便可以用数学符号表
5、示出来,但数学符号不是唯一的,可以丰 富多彩。如一辆汽车的行驶时速为定值80千米,那么该辆汽车行驶的路程和时间成正比,它们之间的数量关系既可以用表格的形式表示,也可以用公式 s=80t表示,还可以用图象表示。即这些符号是可以相互转换的。第四、能选择适当的程序和方法解决用符号所表示的问题。这是指定完成符号化后的下一步工作,就是进行数学的运 算和推理。能够进行正确的运算和推理是非常重要的数学基本功,也是非常重要的数学能力。3、符号化思想的具体应用。数学的发展经历了几千年,数学符号的规范和统一也是经历了比较漫长的过程。如我们现在通用的算术中的十进制计 数符号数字09于公元8世纪在印度产生,经过了几百
6、年才在全世界通用,从通用至今也不过几百年。代数在早期主要是以文 字为主的演算,直到16、17世纪韦达、笛卡尔和莱布尼兹等数学家逐步引进和完善了代数的符号体系。符号在小学数学中的应用如下表。知识领域知识点具体应用应用拓展数与代数数的表示阿拉伯数字:09中文数字:一、+百分号:%0负号:一用数轴表示数数的运算+、x、+、()、a2(平方)、b3(立方)大括号:訂数的大小关系=、v运算定律加法交换律:a+b=b+a加法结合律:a+b+c=a+(b+c)乘法交换律:ab=ba乘法结合律:(ab)c=a(bc)乘法分配律:a(b+c)=ab+aca(b-c)=ab-ac方程ax+b=c数量关系时间、速度
7、和路程:s=vt数量、单价和总价:a=np正比例关系:y/ x=k反比例关系:xy=k用表格表示数量间的关系用图象表示数量间的关系空间与图形用字母表示计量单位长度单位: km、m dm、cm、mm面积单位: kmf、mi dm?、cmf、mrrb hmi(公顷)体积单位:m、dm3、cm容积单位:1 (升)、ml (毫升)质量单位:t、kg、g用付号表示图形用字母表示点:一角形 abc用付号表示角:/ 1、/ 2、/ 3、/ 4 abc线段ab射线c、直线l两线段平行:ab/ cd两线段垂直:ab丄cd abcd用字母表示公式三角形面积:s=1/2ab平行四边形面积:s=ah梯形面积:s=1/
8、2 (a+b) h圆周长:c=2 n r圆面积:s= n r2长方体体积:v=abc正方体积:v=a圆柱体积:v=sh圆锥体积:v=1 / 3sh统计与概率统计图与统计表用统计图表述和分析各种信息可能性用分数表示可能性的大小4、符号化思想的数学。符号化思想作为数学基本的、广泛应用的思想之一,教师和学生无时无刻不在与它们打交道。教师在教学中应把握好 以下几点。(1)在思想上引起重视。数学课程标准把培养学生的符号意识作为必学的内容,并提出了具体要求,足以证明它的 重要性。因此,教师在日常教学中应给予足够的重视。(2)把培养符号意识落实到课堂教学目标中。教师在每堂课的教学设计中,要明确符号的具体应用
9、,并纳入教学目标中。 创设合适的情境,引导学生在探索中归纳和理解教学符号化的模型,并进行解释和应用。(3)引导学生认识符号的特点。数学符号是人们在研究现实世界的数量关系和空间形式的过程中产生的,它来源于生活,但并不是生活中真实的物质存在,而是一种抽象概括。如数字1,它可以表示现实生活中任何数量是一个的物体的个数,是种高度的抽象概括,具有一定的抽象性。一个数学符号一旦产生并被广泛应用,它就具有明确的含义,就能进行精确地数学运 算和推理证明,因而它具有精确性。数学能够帮助人们完成大量的运算和推理证明,但如果没有简捷的思想和符号的参与,它 的工作量及难度也是很大的,让人望而生畏。一旦简捷的符号参与了运算和推理证明,数学的简捷性就体现出来了。如欧洲人12世纪以前基本上有罗马数字进行计数和运算,由于这种计数法不是十进制的。大数的四则运算非常复杂,严重阻碍了数学的 发展和普及。直到12世纪印度数字及十进制计数法传入欧洲,才使得算术有了较快发展和普及。数学符号的发展也经历了从 各自独立到逐步规范、统一和国际化的过程,最明显的就是早期的数字符号从各自独立的埃及数字、巴比伦数字、中国数字、 印度数字和罗马数字到统一的阿拉伯数字。数学符号经历了从发明到应用再到统一的逐步完善的过程,并促进了数学
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025装饰建材购销合同
- 二零二五年度企业控制权争夺与市场竞争力提升合同3篇
- 2025新版的贸易合同范本
- 二零二五年度个人奢侈品分期购买服务合同规范3篇
- 2024年铜门安装工程合同模板3篇
- 2024年高速公路交通工程专业维护保养合同
- 2024年:云计算平台服务提供合同
- 2025年度新型建筑材料刮瓷施工合同模板2篇
- 2025年度企业研发中心协议教授聘用协议3篇
- 2024版二手房交易合同(含违约责任)3篇
- 妇产科课件-子宫内膜息肉临床诊疗路径(2022版)解读
- 人教版六年级数学上册典型例题系列之第三单元分数除法应用题部分拓展篇(原卷版)
- 课本含注音的注释汇总 统编版语文八年级上册
- 英语答辩问题万能模板
- 胃癌的外科治疗
- 混凝土小路施工方案
- 医师定考的个人述职报告
- 施工现场人员授权书-模板
- 环境保护水土保持保证体系及措施
- 石碑施工方案
- 地下室顶板预留洞口施工方案标准版
评论
0/150
提交评论